Toward Automation of the Diagnosis of Enteroparasitosis via Computational Image Analysis

被引:0
|
作者
Gomes, J. F. [1 ,2 ]
Suzuki, C. T. N. [2 ]
Papa, J. P. [2 ]
Hoshino-Shimizu, S. [3 ]
Falcao, A. X. [2 ]
机构
[1] Univ Estadual Campinas, Inst Biol, Campinas, SP, Brazil
[2] Univ Estadual Campinas, Inst Comp, Campinas, SP, Brazil
[3] Univ Sao Paulo, Fac Pharmaceut Sci, Sao Paulo, SP, Brazil
关键词
D O I
暂无
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
Human intestinal parasites constitute a serious public health problem in most tropical countries. In this work, we present methods and preliminary results toward the fully automation of the human enteroparasitosis diagnosis. This system consists of a sensitive parasitological technique, called TF-Test (R); a peristaltic pump; a digital camera coupled with the microscope; and a computer for image analysis. The images were manually acquired and a database was prepared with 1,126 images with samples from 16 most commonly found species of parasites in Brazil. The automatic image analysis has shown sensitivity 95.3%, specificity 96.4%, and efficiency 96.2%, with kappa coefficient 0.88 (almost perfect concordance). These results indicate the viability of the automatic diagnosis of enteroparasitosis through computational image analysis.
引用
收藏
页码:169 / 174
页数:6
相关论文
共 50 条
  • [41] Advanced Computational Methods for Oncological Image Analysis
    Rundo, Leonardo
    Militello, Carmelo
    Conti, Vincenzo
    Zaccagna, Fulvio
    Han, Changhee
    JOURNAL OF IMAGING, 2021, 7 (11)
  • [42] Hybrid Computational Methods for Hyperspectral Image Analysis
    Veganzones, Miguel A.
    Grana, Manuel
    HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, PT II, 2012, 7209 : 424 - 435
  • [43] Computational image analysis for prognosis determination in DME
    Gerendas, Bianca S.
    Bogunovic, Hrvoje
    Sadeghipour, Amir
    Schlegl, Thomas
    Langs, Georg
    Waldstein, Sebastian M.
    Schmidt-Erfurth, Ursula
    VISION RESEARCH, 2017, 139 : 204 - 210
  • [44] Digital pathology and computational image analysis in nephropathology
    Barisoni, Laura
    Lafata, Kyle J.
    Hewitt, Stephen M.
    Madabhushi, Anant
    Balis, Ulysses G. J.
    NATURE REVIEWS NEPHROLOGY, 2020, 16 (11) : 669 - 685
  • [45] Computational Image Marking on Metals via Laser Induced Heating
    Cucerca, Sebastian
    Didyk, Piotr
    Seidel, Hans-Peter
    Babaei, Vahid
    ACM TRANSACTIONS ON GRAPHICS, 2020, 39 (04):
  • [46] Computational techniques in zebrafish image processing and analysis
    Xia, Shunren
    Zhu, Yongxu
    Xu, Xiaoyin
    Xia, Weiming
    JOURNAL OF NEUROSCIENCE METHODS, 2013, 213 (01) : 6 - 13
  • [47] Digital pathology and computational image analysis in nephropathology
    Laura Barisoni
    Kyle J. Lafata
    Stephen M. Hewitt
    Anant Madabhushi
    Ulysses G. J. Balis
    Nature Reviews Nephrology, 2020, 16 : 669 - 685
  • [48] A survey of computational methods for iconic image analysis
    van Noord, Nanne
    DIGITAL SCHOLARSHIP IN THE HUMANITIES, 2022, 37 (04) : 1316 - 1338
  • [49] Toward Computational Design of Catalysts for CO2 Selective Reduction via Reaction Phase Diagram Analysis
    Han, Mengru
    Fu, Xiaoyan
    Cao, Ang
    Guo, Chenxi
    Chu, Wei
    Xiao, Jianping
    ADVANCED THEORY AND SIMULATIONS, 2019, 2 (03)
  • [50] Toward a Halophenol Dehalogenase from Iodotyrosine Deiodinase via Computational Design
    Sun, Zuodong
    Rokita, Steven E.
    ACS CATALYSIS, 2018, 8 (12): : 11783 - 11793