SURFACE PARAMETERS ESTIMATION USING RADARSAT-2 POLARIMETRIC DATA OVER WHEAT COVERED AREA

被引:0
|
作者
Chen, Quan [1 ,2 ,3 ]
Li, Zhen [1 ]
Cai, Aimin [2 ,3 ]
Tian, Bangsen [1 ,2 ]
机构
[1] Chinese Acad Sci, Ctr Earth Observat & Digital Earth, Beijing 100864, Peoples R China
[2] Grad Univ Chinese Acad Sci, Beijing 100864, Peoples R China
[3] Beijing Normal Univ, Inst Remote Sensing Applicat Chinese Acad Sci, State Key Lab Remote Sensing Sci, Beijing 100864, Peoples R China
关键词
Radarsat-2; Soil Moisture; Roughness; Polarimetric; Vegetation Covered area;
D O I
10.1109/IGARSS.2010.5650824
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In the field of agriculture, robust harvests and crop yields are challenged by the dynamic nature of soil and crop conditions that fluctuate throughout the growing season. Satellite SAR imagery is an efficient method for mapping crop and underground soil characteristics over large spatial areas and tracking temporal changes in soil and crop conditions. Compared with conventional one (ERS-1/2, Radarsat-1) or two-polarization (Envisat/ASAR) space-borne SAR sensors, RADARSAT-2 powerful new features in terms of polarization can benefit the agricultural sector. In this paper, soil moisture and LAI from ground measurements is compared with power information of two Radarsat-2 polarimetric images, result shows soil moisture does has some influence when vegetation is short, but LAI doesn't influence backscattering at any stage of this paper.
引用
收藏
页码:4843 / 4846
页数:4
相关论文
共 50 条
  • [21] RANDOM FOREST CLASSIFICATION OF RICE PLANTING AREA USING MULTI-TEMPORAL POLARIMETRIC RADARSAT-2 DATA
    Peng, Wanshan
    Li, Shihua
    He, Ze
    Ning, Silan
    Liu, Yuhan
    Su, Zhonghua
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 2411 - 2414
  • [22] SHIP DETECTION BASED ON THE POWER OF THE RADARSAT-2 POLARIMETRIC DATA
    Zhang, Tao
    Yang, Zhen
    Xiong, Huilin
    Yu, Wenxian
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 1254 - 1257
  • [23] Modelling of surface roughness on agriculture area using Radarsat-2 satellite
    Nurtyawan, Rian
    Ferdiyanti, Geta Ayu
    Budiharto, Agung
    Wikantika, Ketut
    FIFTH INTERNATIONAL CONFERENCES OF INDONESIAN SOCIETY FOR REMOTE SENSING: THE REVOLUTION OF EARTH OBSERVATION FOR A BETTER HUMAN LIFE, 2020, 500
  • [24] RADARSAT-2 Polarimetric Calibration Performance Over Five Years of Operation
    Caves, Ron
    10TH EUROPEAN CONFERENCE ON SYNTHETIC APERTURE RADAR (EUSAR 2014), 2014,
  • [25] Snow Cover Extraction in Mountain Areas Using RadarSat-2 Polarimetric SAR data
    He, G. J.
    Jiang, J. X.
    Xia, Z. H.
    Hao, Y.
    Xiao, P. F.
    Feng, X. Z.
    Wang, Z.
    PROCEEDINGS OF 2016 16TH INTERNATIONAL CONFERENCE ON GROUND PENETRATING RADAR (GPR), 2016,
  • [26] Land Cover Classification in SubArctic Regions Using Fully Polarimetric RADARSAT-2 Data
    Duguay, Yannick
    Bernier, Monique
    Levesque, Esther
    Domine, Florent
    REMOTE SENSING, 2016, 8 (09)
  • [27] Orthorectification of Full-Polarimetric Radarsat-2 Data Using Accurate LIDAR DSM
    Toutin, Thierry
    Wang, Huili
    Chomaz, Pierre
    Pottier, Eric
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (12): : 5252 - 5258
  • [28] Decision Tree Approach to Classify the Fully Polarimetric RADARSAT-2 Data
    Jain, Ankita
    Singh, Dharmendra
    2015 NATIONAL CONFERENCE ON RECENT ADVANCES IN ELECTRONICS & COMPUTER ENGINEERING (RAECE), 2015, : 318 - 323
  • [29] CLASSIFICATION OF CULTIVATED RICE FIELDS IN NORTHERN VIETNAM USING POLARIMETRIC RADARSAT-2 DATA
    Hoang, Kim-Huong
    Bernier, Monique
    Duchesne, Sophie
    Tran, Minh Y.
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 2681 - 2684
  • [30] A Polarimetric Decomposition and Copula Quantile Regression Approach for Soil Moisture Estimation From Radarsat-2 Data Over Vegetated Areas
    Zhang, Li
    Wang, Rui
    Chai, Huiming
    Lv, Xiaolei
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 3405 - 3417