Engineered valley-orbit splittings in quantum-confined nanostructures in silicon

被引:30
|
作者
Rahman, R. [1 ]
Verduijn, J. [2 ,3 ]
Kharche, N. [4 ]
Lansbergen, G. P. [2 ]
Klimeck, G. [5 ]
Hollenberg, L. C. L. [6 ]
Rogge, S. [2 ,3 ]
机构
[1] Sandia Natl Labs, Albuquerque, NM 87185 USA
[2] Delft Univ Technol, Kavli Inst Nanosci, NL-2628 CJ Delft, Netherlands
[3] Univ New S Wales, Sch Phys, Ctr Quantum Computat & Commun Technol, Sydney, NSW 2052, Australia
[4] Rensselaer Polytech Inst, Dept Phys, Computat Ctr Nanotechnol Innovat, Troy, NY 12180 USA
[5] Purdue Univ, Network Computat Nanotechnol, W Lafayette, IN 47907 USA
[6] Univ Melbourne, Sch Phys, Ctr Quantum Computat & Commun Technol, Melbourne, Vic 3010, Australia
来源
PHYSICAL REVIEW B | 2011年 / 83卷 / 19期
基金
美国能源部; 澳大利亚研究理事会;
关键词
NEMO; 3-D; SIMULATION; TRANSPORT; ATOM; DOTS;
D O I
10.1103/PhysRevB.83.195323
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An important challenge in silicon quantum electronics in the few electron regime is the potentially small energy gap between the ground and excited orbital states in 3D quantum confined nanostructures due to the multiple valley degeneracies of the conduction band present in silicon. Understanding the "valley-orbit" (VO) gap is essential for silicon qubits, as a large VO gap prevents leakage of the qubit states into a higher dimensional Hilbert space. The VO gap varies considerably depending on quantum confinement, and can be engineered by external electric fields. In this work we investigate VO splitting experimentally and theoretically in a range of confinement regimes. We report measurements of the VO splitting in silicon quantum dot and donor devices through excited state transport spectroscopy. These results are underpinned by large-scale atomistic tight-binding calculations involving over 1 million atoms to compute VO splittings as functions of electric fields, donor depths, and surface disorder. The results provide a comprehensive picture of the range of VO splittings that can be achieved through quantum engineering.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Engineered valley-orbit splittings in quantum-confined nanostructures in silicon (vol 83, 195323, 2011)
    Rahman, R.
    Verduijn, J.
    Kharche, N.
    Lansbergen, G. P.
    Klimeck, G.
    Hollenberg, L. C. L.
    Rogge, S.
    PHYSICAL REVIEW B, 2011, 83 (23):
  • [2] VALLEY-ORBIT SPLITTINGS FOR THE DONOR STATES IN GAP
    CHANG, YC
    MCGILL, TC
    PHYSICAL REVIEW B, 1981, 24 (10): : 5779 - 5787
  • [3] Spin and valley-orbit splittings in SiGe/Si heterostructures
    Nestoklon, MO
    Golub, LE
    Ivchenko, EL
    PHYSICAL REVIEW B, 2006, 73 (23):
  • [4] Spin filling of valley-orbit states in a silicon quantum dot
    Lim, W. H.
    Yang, C. H.
    Zwanenburg, F. A.
    Dzurak, A. S.
    NANOTECHNOLOGY, 2011, 22 (33)
  • [5] How Valley-Orbit States in Silicon Quantum Dots Probe Quantum Well Interfaces
    Dodson, J. P.
    Ercan, H. Ekmel
    Corrigan, J.
    Losert, Merritt P.
    Holman, Nathan
    McJunkin, Thomas
    Edge, L. F.
    Friesen, Mark
    Coppersmith, S. N.
    Eriksson, M. A.
    PHYSICAL REVIEW LETTERS, 2022, 128 (14)
  • [6] Interacting donor atoms in silicon: valley-orbit coupling
    Klymenko, Mykhailo V.
    Remacle, Francoise
    2014 IEEE SILICON NANOELECTRONICS WORKSHOP (SNW), 2014,
  • [7] VALLEY-ORBIT SPLITTING OF INDIRECT FREE EXCITON IN SILICON
    DEAN, PJ
    YAFET, Y
    HAYNES, JR
    PHYSICAL REVIEW, 1969, 184 (03): : 837 - &
  • [8] VALLEY-ORBIT SPLITTING OF INDIRECT FREE EXCITON IN SILICON - CORRECTION
    DEAN, PJ
    PHYSICAL REVIEW B, 1970, 1 (10): : 4193 - &
  • [9] Interface roughness, valley-orbit coupling, and valley manipulation in quantum dots
    Culcer, Dimitrie
    Hu, Xuedong
    Das Sarma, S.
    PHYSICAL REVIEW B, 2010, 82 (20)
  • [10] Valley-orbit splitting of lithium-related donors in silicon
    Pavlov, S. G.
    Abrosimov, N. V.
    Huebers, H. -W.
    PHYSICAL REVIEW B, 2023, 107 (11)