The near vacuum hohlraum campaign at the NIF: A new approach

被引:50
|
作者
Le Pape, S. [1 ]
Hopkins, L. F. Berzak [1 ]
Divol, L. [1 ]
Meezan, N. [1 ]
Turnbull, D. [1 ]
Mackinnon, A. J. [2 ]
Ho, D. [1 ]
Ross, J. S. [1 ]
Khan, S. [1 ]
Pak, A. [1 ]
Dewald, E. [1 ]
Benedetti, L. R. [1 ]
Nagel, S. [1 ]
Biener, J. [1 ]
Callahan, D. A. [1 ]
Yeamans, C. [1 ]
Michel, P. [1 ]
Schneider, M. [1 ]
Kozioziemski, B. [1 ]
Ma, T. [1 ]
Macphee, A. G. [1 ]
Haan, S. [1 ]
Izumi, N. [1 ]
Hatarik, R. [1 ]
Sterne, P. [1 ]
Celliers, P. [1 ]
Ralph, J. [1 ]
Rygg, R. [1 ]
Strozzi, D. [1 ]
Kilkenny, J. [3 ]
Rosenberg, M. [1 ]
Rinderknecht, H. [1 ]
Sio, H. [4 ]
Gatu-Johnson, M. [4 ]
Frenje, J. [4 ]
Petrasso, R. [4 ]
Zylstra, A. [5 ]
Town, R. [1 ]
Hurricane, O. [1 ]
Nikroo, A. [1 ]
Edwards, M. J. [1 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[2] SLAC Natl Accelerator Lab, 2575 Sand Hill Rd,MS 19, Menlo Pk, CA 94025 USA
[3] Gen Atom Co, San Diego, CA 92186 USA
[4] MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[5] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA
关键词
D O I
10.1063/1.4950843
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The near vacuum campaign on the National Ignition Facility has concentrated its efforts over the last year on finding the optimum target geometry to drive a symmetric implosion at high convergence ratio (30x). As the hohlraum walls are not tamped with gas, the hohlraum is filling with gold plasma and the challenge resides in depositing enough energy in the hohlraum before it fills up. Hohlraum filling is believed to cause symmetry swings late in the pulse that are detrimental to the symmetry of the hot spot at high convergence. This paper describes a series of experiments carried out to examine the effect of increasing the distance between the hohlraum wall and the capsule (case to capsule ratio) on the symmetry of the hot spot. These experiments have shown that smaller Case to Capsule Ratio (CCR of 2.87 and 3.1) resulted in oblate implosions that could not be tuned round. Larger CCR (3.4) led to a prolate implosion at convergence 30x implying that inner beam propagation at large CCR is not impeded by the expanding hohlraum plasma. A Case to Capsule ratio of 3.4 is a promising geometry to design a round implosion but in a smaller hohlraum where the hohlraum losses are lower, enabling a wider cone fraction range to adjust symmetry. Published by AIP Publishing.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Analysis of hohlraum energetics of the SG series and the NIF experiments with energy balance model
    Ren, Guoli
    Liu, Jie
    Huo, Wenyi
    Lan, Ke
    MATTER AND RADIATION AT EXTREMES, 2017, 2 (01) : 22 - 27
  • [22] A photon-photon collider in a vacuum hohlraum
    Pike, O. J.
    Mackenroth, F.
    Hill, E. G.
    Rose, S. J.
    NATURE PHOTONICS, 2014, 8 (06) : 434 - 436
  • [23] Capsule Shimming Developments for National Ignition Facility (NIF) Hohlraum Asymmetry Experiments
    Rice, N.
    Vu, M.
    Kong, C.
    Mauldin, M.
    Tambazidis, A.
    Hoppe, M., Jr.
    Fitzsimmons, P.
    Farrell, M.
    Clark, D.
    Dewald, E.
    Smalyuk, V.
    FUSION SCIENCE AND TECHNOLOGY, 2018, 73 (02) : 279 - 284
  • [24] The Ignition Physics Campaign on NIF: Status and Progress
    Edwards, M. J.
    8TH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS (IFSA 2013), 2016, 688
  • [25] Near infrared spectroscopy of NiF
    Benomier, M
    van Groenendael, A
    Pinchemel, B
    Hirao, T
    Bernath, PF
    JOURNAL OF MOLECULAR SPECTROSCOPY, 2005, 233 (02) : 244 - 255
  • [26] Symmetry tuning and high energy coupling for an Al capsule in a Au rugby hohlraum on NIF
    Ping, Y.
    Smalyuk, V. A.
    Amendt, P.
    Khan, S.
    Tommasini, R.
    Dewald, E.
    Field, J. E.
    Graziani, F.
    Hartouni, E.
    Johnson, S.
    Landen, O. L.
    Lindl, J.
    MacPhee, A.
    Nikroo, A.
    Nora, R.
    Prisbrey, S.
    Ralph, J.
    Seugling, R.
    Strozzi, D.
    Tipton, R. E.
    Wang, Y. M.
    Kim, Y.
    Loomis, E.
    Meaney, K. D.
    Merritt, E.
    Montgomery, D.
    Kabadi, N.
    Lahmann, B.
    Petrasso, R.
    PHYSICS OF PLASMAS, 2020, 27 (10)
  • [27] Calculation of re-emission diagnostic in NIF ignition Hohlraum at 1 MJ laser energy
    Delamater, N.
    Bradley, P.
    Magelssen, G.
    Wilson, D.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2006, 77 (10):
  • [28] National Ignition Campaign Hohlraum energetics (vol 17, 056304, 2010)
    Meezan, N. B.
    Atherton, L. J.
    Bond, E. J.
    Callahan, D. A.
    Dewald, E. L.
    Dixit, S.
    Dzenitis, E. G.
    Edwards, M. J.
    Haynam, C. A.
    Hinkel, D. E.
    Jones, O. S.
    Landen, O.
    London, R. A.
    Michel, P. A.
    Moody, J. D.
    Milovich, J. L.
    Schneider, M. B.
    Thomas, C. A.
    Town, R. P. J.
    Warrick, A. L.
    Weber, S. V.
    Widmann, K.
    Glenzer, S. H.
    Suter, L. J.
    MacGowan, B. J.
    Kline, J. L.
    Kyrala, G. A.
    Nikroo, A.
    PHYSICS OF PLASMAS, 2010, 17 (10)
  • [29] The NIF x-ray spectrometer calibration campaign at Omega
    Perez, F.
    Kemp, G. E.
    Regan, S. P.
    Barrios, M. A.
    Pino, J.
    Scott, H.
    Ayers, S.
    Chen, H.
    Emig, J.
    Colvin, J. D.
    Bedzyk, M.
    Shoup, M. J., III
    Agliata, A.
    Yaakobi, B.
    Marshall, F. J.
    Hamilton, R. A.
    Jaquez, J.
    Farrell, M.
    Nikroo, A.
    Fournier, K. B.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (11):
  • [30] The effect of condensates and inner coatings on the performance of vacuum hohlraum targets
    Boehly, T. R.
    Olson, R. E.
    Celliers, P. M.
    Munro, D. H.
    Seka, W.
    Landen, O. L.
    Collins, G. W.
    Suter, L. J.
    Sangster, T. C.
    Meyerhofer, D. D.
    PHYSICS OF PLASMAS, 2010, 17 (03)