Estimation with Uncertainty via Conditional Generative Adversarial Networks

被引:12
|
作者
Lee, Minhyeok [1 ]
Seok, Junhee [2 ]
机构
[1] Chung Ang Univ, Sch Elect & Elect Engn, Seoul 06974, South Korea
[2] Korea Univ, Sch Elect Engn, Seoul 02841, South Korea
基金
新加坡国家研究基金会;
关键词
generative adversarial network; deep learning; adversarial learning; probability estimation; risk estimation; portfolio management;
D O I
10.3390/s21186194
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Conventional predictive Artificial Neural Networks (ANNs) commonly employ deterministic weight matrices; therefore, their prediction is a point estimate. Such a deterministic nature in ANNs causes the limitations of using ANNs for medical diagnosis, law problems, and portfolio management in which not only discovering the prediction but also the uncertainty of the prediction is essentially required. In order to address such a problem, we propose a predictive probabilistic neural network model, which corresponds to a different manner of using the generator in the conditional Generative Adversarial Network (cGAN) that has been routinely used for conditional sample generation. By reversing the input and output of ordinary cGAN, the model can be successfully used as a predictive model; moreover, the model is robust against noises since adversarial training is employed. In addition, to measure the uncertainty of predictions, we introduce the entropy and relative entropy for regression problems and classification problems, respectively. The proposed framework is applied to stock market data and an image classification task. As a result, the proposed framework shows superior estimation performance, especially on noisy data; moreover, it is demonstrated that the proposed framework can properly estimate the uncertainty of predictions.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] TRANSLATING MULTISPECTRAL IMAGERY TO NIGHTTIME IMAGERY VIA CONDITIONAL GENERATIVE ADVERSARIAL NETWORKS
    Huang, Xiao
    Xu, Dong
    Li, Zhenlong
    Wang, Cuizhen
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 6758 - 6761
  • [22] Facial Image Attributes Transformation via Conditional Recycle Generative Adversarial Networks
    Huai-Yu Li
    Wei-Ming Dong
    Bao-Gang Hu
    Journal of Computer Science and Technology, 2018, 33 : 511 - 521
  • [23] Probabilistic Brain Extraction in MR Images via Conditional Generative Adversarial Networks
    Moazami, Saeed
    Ray, Deep
    Pelletier, Daniel
    Oberai, Assad A.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2024, 43 (03) : 1071 - 1088
  • [24] Semantic Image Synthesis via Conditional Cycle-Generative Adversarial Networks
    Liu, Xiyan
    Meng, Gaofeng
    Xiang, Shiming
    Pan, Chunhong
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 988 - 993
  • [25] Downlink Channel Estimation for FDD Massive MIMO Using Conditional Generative Adversarial Networks
    Banerjee, Bitan
    Elliott, Robert C.
    Krzymien, Witold A.
    Farmanbar, Hamid
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (01) : 122 - 137
  • [26] Channel estimation for fiber-terahertz communication based on conditional generative adversarial networks
    Wang, Haoyu
    Zhang, Chongfu
    Zhang, Xujia
    Deng, Chunjian
    Yang, Liang
    Cai, Xiaomin
    Geng, Yong
    Xu, Tianhua
    OPTICS COMMUNICATIONS, 2024, 571
  • [27] Content loss and conditional space relationship in conditional generative adversarial networks
    Eken, Enes
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2022, 30 (05) : 1741 - 1757
  • [28] Adversarial Sample Detection with Gaussian Mixture Conditional Generative Adversarial Networks
    Zhang, Pengfei
    Ju, Xiaoming
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [29] Towards recovery of conditional vectors from conditional generative adversarial networks
    Ding, Sihao
    Wallin, Andreas
    PATTERN RECOGNITION LETTERS, 2019, 122 : 66 - 72
  • [30] Recursive Conditional Generative Adversarial Networks for Video Transformation
    Kim, San
    Suh, Doug Young
    IEEE ACCESS, 2019, 7 : 37807 - 37821