Amenable actions and almost invariant sets

被引:0
|
作者
Kechris, Alexander S. [1 ]
Tsankov, Todor [1 ]
机构
[1] CALTECH, Dept Math 253 37, Pasadena, CA 91125 USA
关键词
generalized Bernoulli shifts; amenable actions; almost invariant sets; E-0-ergodicity;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the connections between properties of the action of a countable group G on a countable set X and the ergodic theoretic properties of the corresponding generalized Bernoulli shift, i.e., the corresponding shift action of Gamma on M-X, where M is a measure space. In particular, we show that the action of Gamma on X is amenable iff the shift Gamma curved right arrow MX has almost invariant sets.
引用
收藏
页码:687 / 697
页数:11
相关论文
共 50 条
  • [33] EXPANDING MAPS ON SETS WHICH ARE ALMOST INVARIANT - DECAY AND CHAOS
    PIANIGIANI, G
    YORKE, JA
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 252 (AUG) : 351 - 366
  • [34] Almost Global Finite-Time Stability of Invariant Sets
    Karabacak, Ozkan
    Wisniewski, Rafael
    Kivilcim, Aysegul
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 3098 - 3103
  • [35] AMENABLE ACTIONS OF GROUPS
    ADAMS, S
    ELLIOTT, GA
    GIORDANO, T
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 344 (02) : 803 - 822
  • [36] Transference for amenable actions
    Hebisch, W
    Kuhn, MG
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (06) : 1733 - 1740
  • [37] PERIODIC MEASURES ARE DENSE IN INVARIANT MEASURES FOR RESIDUALLY FINITE AMENABLE GROUP ACTIONS WITH SPECIFICATION
    Ren, Xiankun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (04) : 1657 - 1667
  • [38] Invariant Measures for Discontinuous Skew-Product Actions of Amenable Semigroups and Some Ergodic Results
    Meysam Jafari
    Abbas Sahleh
    Mohammad Akbari Tootkaboni
    Bulletin of the Malaysian Mathematical Sciences Society, 2023, 46
  • [39] Amenable invariant random subgroups
    Uri Bader
    Bruno Duchesne
    Jean Lécureux
    Phillip Wesolek
    Israel Journal of Mathematics, 2016, 213 : 399 - 422
  • [40] Amenable invariant random subgroups
    Bader, Uri
    Duchesne, Bruno
    Lecureux, Jean
    Wesolek, Phillip
    ISRAEL JOURNAL OF MATHEMATICS, 2016, 213 (01) : 399 - 422