TOTALLY REAL THUE INEQUALITIES OVER IMAGINARY QUADRATIC FIELDS

被引:0
|
作者
Gaal, Istvan [1 ]
Jadrijevic, Borka [2 ]
Remete, Laszlo [1 ]
机构
[1] Univ Debrecen, Math Inst, Pf 400, H-4002 Debrecen, Hungary
[2] Univ Split, Fac Sci, Rudera Boskovica 33, Split 21000, Croatia
关键词
Relative Thue equations; Thue inequalities; RESOLUTION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let F(x, y) be an irreducible binary form of degree >= 3 with integer coefficients and with real roots. Let M be an imaginary quadratic field with ring of integers Z(M). Let K > 0. We describe an efficient method how to reduce the resolution of the relative Thue inequalities vertical bar F(x, y)vertical bar <= K (x, y is an element of Z(M)) to the resolution of absolute Thue inequalities of type vertical bar F(x,y)vertical bar <= k (x,y is an element of Z). We illustrate our method with an explicit example.
引用
收藏
页码:229 / 238
页数:10
相关论文
共 50 条
  • [31] TRUNCATED EULER SYSTEMS OVER IMAGINARY QUADRATIC FIELDS
    Seo, Soogil
    NAGOYA MATHEMATICAL JOURNAL, 2009, 195 : 97 - 111
  • [32] On CM abelian varieties over imaginary quadratic fields
    Yang, TH
    MATHEMATISCHE ANNALEN, 2004, 329 (01) : 87 - 117
  • [33] On the cohomology of linear groups over imaginary quadratic fields
    Sikiric, Mathieu Dutour
    Gangl, Herbert
    Gunnells, Paul E.
    Hanke, Jonathan
    Schuermann, Achill
    Yasaki, Dan
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2016, 220 (07) : 2564 - 2589
  • [34] Reduction of matrices over orders of imaginary quadratic fields
    Kures, Miroslav
    Skula, Ladislav
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (08) : 1903 - 1919
  • [35] Ring class invariants over imaginary quadratic fields
    Eum, Ick Sun
    Koo, Ja Kyung
    Shin, Dong Hwa
    FORUM MATHEMATICUM, 2016, 28 (02) : 201 - 217
  • [36] Same diophantine problems over the imaginary quadratic fields
    Soldo, Ivan
    MATHEMATICAL COMMUNICATIONS, 2012, 17 (02) : 699 - 700
  • [37] Normal bases of ray class fields over imaginary quadratic fields
    Jung, Ho Yun
    Koo, Ja Kyung
    Shin, Dong Hwa
    MATHEMATISCHE ZEITSCHRIFT, 2012, 271 (1-2) : 109 - 116
  • [38] Normal bases of ray class fields over imaginary quadratic fields
    Ho Yun Jung
    Ja Kyung Koo
    Dong Hwa Shin
    Mathematische Zeitschrift, 2012, 271 : 109 - 116
  • [39] Inequalities of Ono numbers and class numbers associated to imaginary quadratic fields
    Shimizu, Kenichi
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2009, 85 (04) : 46 - 48
  • [40] UNIT GROUPS OF MAXIMAL ORDERS IN TOTALLY DEFINITE QUATERNION ALGEBRAS OVER REAL QUADRATIC FIELDS
    Li, Qun
    Xue, Jiangwei
    Yu, Chia-Fu
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (08) : 5349 - 5403