DeepMalNet: Evaluating shallow and deep networks for static PE malware detection

被引:30
|
作者
Vinayakumar, R. [1 ]
Soman, K. P. [1 ]
机构
[1] Amrita Vishwa Vidyapeetham, Amrita Sch Engn, Ctr Computat Engn & Networking CEN, Coimbatore, Tamil Nadu, India
来源
ICT EXPRESS | 2018年 / 4卷 / 04期
关键词
Static analysis; Malicious and benign binaries and deep networks;
D O I
10.1016/j.icte.2018.10.006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper primarily evaluates the efficacy of shallow and deep networks to statically detect malicious windows portable executable (PE) files. This uses recently released, labeled and benchmark data set, EMBER malware benchmark data set. As deep networks are parameterized, the parameters are chosen based on comparing the performance of various network parameters and network topologies over various trials of experiments. The experiments of such chosen efficient configurations of deep models are run up to 1000 epochs with varying learning rates between 0.01 and 0.5. The observed results of deep networks are high compared to the shallow networks. (C) 2018 The Korean Institute of Communications and Information Sciences (KICS). Publishing Services by Elsevier B.V.
引用
收藏
页码:255 / 258
页数:4
相关论文
共 50 条
  • [31] Deep Android Malware Detection
    McLaughlin, Niall
    del Rincon, Jesus Martinez
    Kang, BooJoong
    Yerima, Suleiman
    Miller, Paul
    Sezer, Sakir
    Safaei, Yeganeh
    Trickel, Erik
    Zhao, Ziming
    Doup, Adam
    Ahn, Gail Joon
    PROCEEDINGS OF THE SEVENTH ACM CONFERENCE ON DATA AND APPLICATION SECURITY AND PRIVACY (CODASPY'17), 2017, : 301 - 308
  • [32] Windows PE Malware Detection Using Ensemble Learning
    Azeez, Nureni Ayofe
    Odufuwa, Oluwanifise Ebunoluwa
    Misra, Sanjay
    Oluranti, Jonathan
    Damasevicius, Robertas
    INFORMATICS-BASEL, 2021, 8 (01):
  • [33] A biological model to improve PE malware detection: Review
    Abdulalla, Saman Mirza
    Kiah, Laiha Mat
    Zakaria, Omar
    INTERNATIONAL JOURNAL OF THE PHYSICAL SCIENCES, 2010, 5 (15): : 2236 - 2247
  • [34] Evaluating Shallow and Deep Networks for Secure Shell (SSH)Traffic Analysis
    Vinayakumar, R.
    Soman, K. P.
    Poornachandran, Prabaharan
    2017 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2017, : 266 - 274
  • [35] Malware Detection using Malware Image and Deep Learning
    Choi, Sunoh
    Jang, Sungwook
    Kim, Youngsoo
    Kim, Jonghyun
    2017 INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY CONVERGENCE (ICTC), 2017, : 1193 - 1195
  • [36] Using deep graph learning to improve dynamic analysis-based malware detection in PE files
    Minh Tu Nguyen
    Viet Hung Nguyen
    Nathan Shone
    Journal of Computer Virology and Hacking Techniques, 2024, 20 : 153 - 172
  • [37] Using deep graph learning to improve dynamic analysis-based malware detection in PE files
    Nguyen, Minh Tu
    Nguyen, Viet Hung
    Shone, Nathan
    JOURNAL OF COMPUTER VIROLOGY AND HACKING TECHNIQUES, 2024, 20 (01) : 153 - 172
  • [38] Deep Belief Networks-based framework for malware detection in Android systems
    Saif, Dina
    El-Gokhy, S. M.
    Sallam, E.
    ALEXANDRIA ENGINEERING JOURNAL, 2018, 57 (04) : 4049 - 4057
  • [39] Automatically Combining Static Malware Detection Techniques
    De Lille, David
    Coppens, Bart
    Raman, Daan
    De Sutter, Bjorn
    2015 10TH INTERNATIONAL CONFERENCE ON MALICIOUS AND UNWANTED SOFTWARE (MALWARE), 2015, : 48 - 55
  • [40] Integrated static and dynamic analysis for malware detection
    Shijo, P. V.
    Salim, A.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGIES, ICICT 2014, 2015, 46 : 804 - 811