In Situ Measurement of Solid Electrolyte Interphase Evolution on Silicon Anodes Using Atomic Force Microscopy

被引:95
|
作者
Yoon, Insun [1 ]
Abraham, Daniel P. [2 ]
Lucht, Brett L. [3 ]
Bower, Allan F. [1 ]
Guduru, Pradeep R. [1 ]
机构
[1] Brown Univ, Sch Engn, Providence, RI 02912 USA
[2] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA
[3] Univ Rhode Isl, Dept Chem, Kingston, RI 02881 USA
基金
美国能源部;
关键词
LITHIUM-ION BATTERIES; SURFACE-FILM FORMATION; AMORPHOUS-SILICON; THERMOCHEMICAL EQUILIBRIUM; PROPYLENE CARBONATE; SECONDARY BATTERIES; THIN-FILMS; LI; STRESS; PERFORMANCE;
D O I
10.1002/aenm.201600099
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In situ measurements of the growth of solid electrolyte interphase (SEI) layer on silicon and the lithiation-induced volume changes in silicon in lithium ion half-cells are reported. Thin film amorphous silicon electrodes are fabricated in a configuration that allows unambiguous separation of the total thickness change into contribution from SEI thickness and silicon volume change. Electrodes are assembled into a custom-designed electrochemical cell, which is integrated with an atomic force microscope. The electrodes are subjected to constant potential lithiation/delithiation at a sequence of potential values and the thickness measurements are made at each potential after equilibrium is reached. Experiments are carried out with two electrolytes-1.2 M lithium hexafluoro-phosphate (LiPF6) in ethylene carbonate (EC) and 1.2 M LiPF6 in propylene carbonate (PC)-to investigate the influence of electrolyte composition on SEI evolution. It is observed that SEI formation occurs predominantly during the first lithiation and the maximum SEI thickness is approximate to 17 and 10 nm respectively for EC and PC electrolytes. This study also presents the measured Si expansion ratio versus equilibrium potential and charge capacity versus equilibrium potential; both relationships display hysteresis, which is explained in terms of the stress-potential coupling in silicon.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] In Situ Measurement of Elastic and Frictional Properties Using Atomic Force Microscopy
    Ngoc-Phat Huynh
    Le, Tuan-Em
    Chung, Koo-Hyun
    MICROSCOPY AND MICROANALYSIS, 2021, 27 (06) : 1488 - 1497
  • [22] Evolution of the Solid-Electrolyte Interphase on Carbonaceous Anodes Visualized by Atomic-Resolution Cryogenic Electron Microscopy (vol 19, pg 5140, 2019)
    Huang, William
    Attia, Peter M.
    Wang, Hansen
    Renfrew, Sara E.
    Jin, Norman
    Das, Supratim
    Zhang, Zewen
    Boyle, David T.
    Li, Yuzhang
    Bazant, Martin Z.
    McCloskey, Bryan D.
    Chueh, William C.
    Cui, Yi
    NANO LETTERS, 2020, 20 (07) : 5591 - 5591
  • [23] Solid-electrolyte interphase nucleation and growth on carbonaceous negative electrodes for Li-ion batteries visualized with in situ atomic force microscopy
    Sergey Yu. Luchkin
    Svetlana A. Lipovskikh
    Natalia S. Katorova
    Aleksandra A. Savina
    Artem M. Abakumov
    Keith J. Stevenson
    Scientific Reports, 10
  • [24] Using the Atomic Force Microscopy for nanocomposites local mechanical characterization: Towards the interphase measurement
    Lahoud-Dignat, N.
    Hidayatullah, M. N.
    Saysouk, F.
    Locatelli, M. L.
    Diaham, S.
    2016 IEEE INTERNATIONAL CONFERENCE ON DIELECTRICS (ICD), VOLS 1-2, 2016, : 64 - 67
  • [25] Single Nanowire Electrode Electrochemistry of Silicon Anode by in Situ Atomic Force Microscopy: Solid Electrolyte lnterphase Growth and Mechanical Properties
    Liu, Xing-Rui
    Deng, Xin
    Liu, Ran-Ran
    Yan, Hui-Juan
    Guo, Yu-Guo
    Wang, Dong
    Wan, Li-Jun
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (22) : 20317 - 20323
  • [26] Solid Electrolyte Interphase on Lithium Metal Anodes
    Shen, Zhichuan
    Huang, Junqiao
    Xie, Yu
    Wei, Dafeng
    Chen, Jinbiao
    Shi, Zhicong
    CHEMSUSCHEM, 2024, 17 (11)
  • [27] Two-Stage Growth of Solid Electrolyte Interphase on Copper: Imaging and Quantification by Operando Atomic Force Microscopy
    Thaman, Henry L.
    Li, Michael
    Rose, Justin Andrew
    Narasimhan, Swati
    Xu, Xin
    Yeh, Che-Ning
    Jin, Norman
    Akbashev, Andrew
    Davidoff, Isabel
    Bazant, Martin Z.
    Chueh, William C.
    ACS NANO, 2025, 19 (12) : 11949 - 11960
  • [28] Direct in situ measurements of electrical properties of solid–electrolyte interphase on lithium metal anodes
    Yaobin Xu
    Hao Jia
    Peiyuan Gao
    Diego E. Galvez-Aranda
    Saul Perez Beltran
    Xia Cao
    Phung M. L. Le
    Jianfang Liu
    Mark H. Engelhard
    Shuang Li
    Gang Ren
    Jorge M. Seminario
    Perla B. Balbuena
    Ji-Guang Zhang
    Wu Xu
    Chongmin Wang
    Nature Energy, 2023, 8 : 1345 - 1354
  • [29] Rectifying solid electrolyte interphase structure for stable multi-dimensional silicon anodes
    Xu, Changhaoyue
    Jing, Peng
    Deng, Zhiwen
    Liu, Qingqing
    Jia, Ye
    Zhang, Xuemei
    Deng, Yan
    Zhang, Yun
    Cai, Wenlong
    ENERGY STORAGE MATERIALS, 2025, 74
  • [30] Molecular grafting on silicon anodes: artificial Solid-Electrolyte Interphase and surface stabilization
    Dalla Corte, Daniel Alves
    Gouget-Laemme, Anne Chantal
    Lahlil, Khalid
    Caillon, Georges
    Jordy, Christian
    Chazalviel, Jean-Noel
    Gacoin, Thierry
    Rosso, Michel
    Ozanam, Francois
    ELECTROCHIMICA ACTA, 2016, 201 : 70 - 77