Applications of Anomaly Detection using Deep Learning on Time Series Data

被引:9
|
作者
Van Quan Nguyen [1 ]
Linh Van Ma [1 ]
Kim, Jin-young [1 ]
Kim, Kwangki [2 ]
Kim, Jinsul [1 ]
机构
[1] Chonnam Natl Univ, Sch Elect & Comp Engn, Gwangju 500757, South Korea
[2] Korea Nazarene Univ, Sch IT Convergence, Cheonan Si, South Korea
基金
新加坡国家研究基金会;
关键词
Deep Learning; Recurrent Neural Network (RNN); Long Short Term Memory (LSTM); Time Series Data; Anomaly Detection;
D O I
10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00078
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the modern world, time series data has become a critical part of many systems underlying various types that are recorded to reflect the status of objects according to the timeline. There are many kinds of research investigating to automate the process of analyzing time series data. Long Short-Term Memory (LSTM) network have been demonstrated to be a useful tool for learning sequence data. In this paper, we explore LSTM based approach to analyzing temporal data for abnormal detection. Stacked Long Short-Term Memory (LSTM) network is utilized as a predictor which is trained on normal data to learn the higher level temporal features, then such predictor is used to predict future values. An error-distribution estimation model is built to calculate the anomaly in the score of the observation. Anomalies are detected using a window-based method based on anomaly scores. To prove the promise applicable potential of our approach, we conducted the experiment on some domains (industry system, health monitor system, social based event detection system) come up with time series data including power consumption, ECG signal, and social data respectively.
引用
收藏
页码:393 / 396
页数:4
相关论文
共 50 条
  • [21] A Survey of Deep Anomaly Detection in Multivariate Time Series: Taxonomy, Applications, and Directions
    Wang, Fengling
    Jiang, Yiyue
    Zhang, Rongjie
    Wei, Aimin
    Xie, Jingming
    Pang, Xiongwen
    SENSORS, 2025, 25 (01)
  • [22] Unsupervised anomaly detection by densely contrastive learning for time series data
    Zhu, Wei
    Li, Weijian
    Dorsey, E. Ray
    Luo, Jiebo
    NEURAL NETWORKS, 2023, 168 : 450 - 458
  • [23] Anomaly Detection in Electricity Consumption Data using Deep Learning
    Kardi, Mohammad
    AlSkaif, Tarek
    Tekinerdogan, Bedir
    Catalao, Joao P. S.
    2021 21ST IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2021 5TH IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC/I&CPS EUROPE), 2021,
  • [24] Unsupervised Anomaly Detection for Time Series Data of Spacecraft Using Multi-Task Learning
    Yang, Kaifei
    Wang, Yakun
    Han, Xiaodong
    Cheng, Yuehua
    Guo, Lifang
    Gong, Jianglei
    APPLIED SCIENCES-BASEL, 2022, 12 (13):
  • [25] DeepAD: A Generic Framework Based on Deep Learning for Time Series Anomaly Detection
    Buda, Teodora Sandra
    Caglayan, Bora
    Assem, Haytham
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2018, PT I, 2018, 10937 : 577 - 588
  • [26] MFCD:A Deep Learning Method with Fuzzy Clustering for Time Series Anomaly Detection
    Luo, Kaisheng
    Liu, Chang
    Chen, Baiyang
    Li, Xuedong
    Peng, Dezhong
    Yuan, Zhong
    WEB AND BIG DATA, APWEB-WAIM 2024, PT III, 2024, 14963 : 62 - 77
  • [27] Sparse Deep Learning for Time Series Data: Theory and Applications
    Zhang, Mingxuan
    Sun, Yan
    Liang, Faming
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [28] Two-Stage Deep Anomaly Detection With Heterogeneous Time Series Data
    Jeong, Kyeong-Joong
    Park, Jin-Duk
    Hwang, Kyusoon
    Kim, Seong-Lyun
    Shin, Won-Yong
    IEEE ACCESS, 2022, 10 : 13704 - 13714
  • [29] TranAD: Deep Transformer Networks for Anomaly Detection in Multivariate Time Series Data
    Tuli, Shreshth
    Casale, Giuliano
    Jennings, Nicholas R.
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2022, 15 (06): : 1201 - 1214
  • [30] Anomaly Detection in Time Series Data Using Reversible Instance Normalized Anomaly Transformer
    Baidya, Ranjai
    Jeong, Heon
    SENSORS, 2023, 23 (22)