Is there a circle that passes through a given number of lattice points?

被引:8
|
作者
Maehara, H
Matsumoto, M
机构
[1] Ryukyu Univ, Okayama, Japan
[2] Keio Univ, Yokohama, Kanagawa 223, Japan
关键词
D O I
10.1006/eujc.1997.0189
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is proved that for any integer n greater than or equal to 0, there is a circle in the plane that passes through exactly n lattice points. (C) 1998 Academic Press
引用
收藏
页码:591 / 592
页数:2
相关论文
共 50 条
  • [31] On the number of points with pairwise integral distances on a circle
    Bat-Ochir, Ganbileg
    DISCRETE APPLIED MATHEMATICS, 2019, 254 : 17 - 32
  • [32] Circle Action with Prescribed Number of Fixed Points
    Ping LI
    ActaMathematicaSinica, 2015, 31 (06) : 1035 - 1042
  • [33] INTEGRAL EQUATION FOR THE NUMBER OF INTEGER POINTS IN A CIRCLE
    Chakhkiev, Magomed A.
    Sulyan, Gagik S.
    Ziroyan, Manya A.
    Tretyakov, Nikolay P.
    Mouhammad, Saif A.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, 41 (41): : 522 - 525
  • [34] Circle Action with Prescribed Number of Fixed Points
    Ping LI
    Acta Mathematica Sinica,English Series, 2015, (06) : 1035 - 1042
  • [35] Circle Action with Prescribed Number of Fixed Points
    Li, Ping
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2015, 31 (06) : 1035 - 1042
  • [36] Random mappings with a given number of cyclical points
    Hansen, Jennie C.
    Jaworski, Jerzy
    ARS COMBINATORIA, 2010, 94 : 341 - 359
  • [37] The circle through three points.
    Walther, A
    MATHEMATISCHE ZEITSCHRIFT, 1931, 33 : 796 - 800
  • [38] THE NUMBER OF LATTICE RULES HAVING GIVEN INVARIANTS
    JOE, S
    HUNT, DC
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1992, 46 (03) : 479 - 495
  • [39] On the number of lattice points in thin sectors
    Waxman, Ezra
    Yesha, Nadav
    MONATSHEFTE FUR MATHEMATIK, 2024, 204 (03): : 641 - 658
  • [40] The Number of Lattice Points Above the Catenary
    G. Kuba
    Acta Mathematica Hungarica, 2000, 87 : 173 - 178