Persistent mTORC1 signaling in cell senescence results from defects in amino acid and growth factor sensing

被引:108
|
作者
Carroll, Bernadette [1 ]
Nelson, Glyn [1 ]
Rabanal-Ruiz, Yoana [1 ]
Kucheryavenko, Olena [1 ,5 ]
Dunhill-Turner, Natasha A. [1 ]
Chesterman, Charlotte C. [1 ]
Zahari, Qabil [1 ]
Zhang, Tong [3 ]
Conduit, Sarah E. [4 ]
Mitchell, Christina A. [4 ]
Maddocks, Oliver D. K. [3 ]
Lovat, Penny [2 ]
von Zglinicki, Thomas [1 ]
Korolchuk, Viktor I. [1 ]
机构
[1] Newcastle Univ, Inst Cell & Mol Biosci, Newcastle Upon Tyne, Tyne & Wear, England
[2] Newcastle Univ, Inst Cellular Med, Newcastle Upon Tyne, Tyne & Wear, England
[3] Univ Glasgow, Inst Canc Sci, Wolfson Wohl Canc Res Ctr, Glasgow, Lanark, Scotland
[4] Monash Univ, Monash Biomed Discovery Inst, Dept Biochem & Mol Biol, Canc Program, Clayton, Vic, Australia
[5] Fed Inst Risk Assessment, Berlin, Germany
来源
JOURNAL OF CELL BIOLOGY | 2017年 / 216卷 / 07期
基金
英国生物技术与生命科学研究理事会; 英国医学研究理事会;
关键词
HUMAN FIBROBLASTS; AUTOPHAGY; CILIA; MITOCHONDRIA; SUFFICIENCY; PHENOTYPE; DISEASE; DEATH; MICE;
D O I
10.1083/jcb.201610113
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Mammalian target of rapamycin complex 1 (mTORC1) and cell senescence are intimately linked to each other and to organismal aging. Inhibition of mTORC1 is the best-known intervention to extend lifespan, and recent evidence suggests that clearance of senescent cells can also improve health and lifespan. Enhanced mTORC1 activity drives characteristic phenotypes of senescence, although the underlying mechanisms responsible for increased activity are not well understood. We have identified that in human fibroblasts rendered senescent by stress, replicative exhaustion, or oncogene activation, mTORC1 is constitutively active and resistant to serum and amino acid starvation. This is driven in part by depolarization of senescent cell plasma membrane, which leads to primary cilia defects and a resultant failure to inhibit growth factor signaling. Further, increased autophagy and high levels of intracellular amino acids may act to support mTORC1 activity in starvation conditions. Interventions to correct these phenotypes restore sensitivity to the mTORC1 signaling pathway and cause death, indicating that persistent signaling supports senescent cell survival.
引用
收藏
页码:1949 / 1957
页数:9
相关论文
共 50 条
  • [21] The yoga of Rag GTPases: Dynamic structural poses confer amino acid sensing by mTORC1
    Fingar, Diane C.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2021, 297 (03)
  • [22] An interdomain hydrogen bond in the Rag GTPases maintains stable mTORC1 signaling in sensing amino acids
    Egri, Shawn B.
    Shen, Kuang
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2021, 297 (01)
  • [23] Targeting amino acid transport to block mTORC1 and cell cycle in prostate cancer
    Wang, Qian
    Hardie, Rae-Anne
    Hoy, Andrew
    Fazli, Ladan
    Bailey, Charles
    Rasko, John E. J.
    Holst, Jeff
    MOLECULAR CANCER THERAPEUTICS, 2015, 14 (07)
  • [24] Leucine and branched-chain amino acid metabolism contribute to the growth of bone sarcomas by regulating AMPK and mTORC1 signaling
    Martin, Shailer B.
    Reiche, William S.
    Fifelski, Nicholas A.
    Schultz, Alexander J.
    Stanford, Spencer J.
    Martin, Alexander A.
    Nack, Danielle L.
    Radlwimmer, Bernhard
    Boyer, Michael P.
    Ananieva, Elitsa A.
    BIOCHEMICAL JOURNAL, 2020, 477 (09) : 1579 - 1599
  • [25] Downregulation of Placental Amino Acid Transporter Expression and mTORC1 Signaling Activity Contributes to Fetal Growth Retardation in Diabetic Rats
    Xu, Jie
    Wang, Jiao
    Cao, Yang
    Jia, Xiaotong
    Huang, Yujia
    Cai, Minghui
    Lu, Chunmei
    Zhu, Hui
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (05)
  • [26] Rag Ubiquitination Recruits a GATOR1: Attenuation of Amino Acid-Induced mTORC1 Signaling
    Fingar, Diane C.
    MOLECULAR CELL, 2015, 58 (05) : 713 - 715
  • [27] SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1
    Rebsamen, Manuele
    Pochini, Lorena
    Stasyk, Taras
    de Araujo, Mariana E. G.
    Galluccio, Michele
    Kandasamy, Richard K.
    Snijder, Berend
    Fauster, Astrid
    Rudashevskaya, Elena L.
    Bruckner, Manuela
    Scorzoni, Stefania
    Filipek, Przemyslaw A.
    Huber, Kilian V. M.
    Bigenzahn, Johannes W.
    Heinz, Leonhard X.
    Kraft, Claudine
    Bennett, Keiryn L.
    Indiveri, Cesare
    Huber, Lukas A.
    Superti-Furga, Giulio
    NATURE, 2015, 519 (7544) : 477 - +
  • [28] Oncogenic RAS commandeers amino acid sensing machinery to aberrantly activate mTORC1 in multiple myeloma
    Yang, Yandan
    Bolomsky, Arnold
    Oellerich, Thomas
    Chen, Ping
    Ceribelli, Michele
    Haupl, Bjorn
    Wright, George W.
    Phelan, James D.
    Huang, Da Wei
    Lord, James W.
    Van Winkle, Callie K.
    Yu, Xin
    Wisniewski, Jan
    Wang, James Q.
    Tosto, Frances A.
    Beck, Erin
    Wilson, Kelli
    McKnight, Crystal
    Travers, Jameson
    Klumpp-Thomas, Carleen
    Smith, Grace A.
    Pittaluga, Stefania
    Maric, Irina
    Kazandjian, Dickran
    Thomas, Craig J.
    Young, Ryan M.
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [29] SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1
    Manuele Rebsamen
    Lorena Pochini
    Taras Stasyk
    Mariana E. G. de Araújo
    Michele Galluccio
    Richard K. Kandasamy
    Berend Snijder
    Astrid Fauster
    Elena L. Rudashevskaya
    Manuela Bruckner
    Stefania Scorzoni
    Przemyslaw A. Filipek
    Kilian V. M. Huber
    Johannes W. Bigenzahn
    Leonhard X. Heinz
    Claudine Kraft
    Keiryn L. Bennett
    Cesare Indiveri
    Lukas A. Huber
    Giulio Superti-Furga
    Nature, 2015, 519 : 477 - 481
  • [30] SLC38A9: A lysosomal amino acid transporter at the core of the amino acid-sensing machinery that controls MTORC1
    Rebsamen, Manuele
    Superti-Furga, Giulio
    AUTOPHAGY, 2016, 12 (06) : 1061 - 1062