From invariant checking to invariant inference using randomized search

被引:27
|
作者
Sharma, Rahul [1 ]
Aiken, Alex [1 ]
机构
[1] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Verification; Loop invariants; Markov Chain Monte Carlo (MCMC); Satisfiability modulo theories (SMT);
D O I
10.1007/s10703-016-0248-5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We describe a general framework c2i for generating an invariant inference procedure from an invariant checking procedure. Given a checker and a language of possible invariants, c2i generates an inference procedure that iteratively invokes two phases. The search phase uses randomized search to discover candidate invariants and the validate phase uses the checker to either prove or refute that the candidate is an actual invariant. To demonstrate the applicability of c2i , we use it to generate inference procedures that prove safety properties of numerical programs, prove non-termination of numerical programs, prove functional specifications of array manipulating programs, prove safety properties of string manipulating programs, and prove functional specifications of heap manipulating programs that use linked list data structures.
引用
收藏
页码:235 / 256
页数:22
相关论文
共 50 条
  • [31] THE SEARCH FOR SCALE INVARIANT COSMOLOGY
    GRIBBIN, J
    NEW SCIENTIST, 1982, 95 (1324) : 844 - 846
  • [32] Model Checking Invariant Security Properties in OpenFlow
    Son, Sooel
    Shin, Seungwon
    Yegneswaran, Vinod
    Porras, Phillip
    Gu, Guofei
    2013 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2013,
  • [33] Learning Invariant Representations From EEG via Adversarial Inference
    Ozdenizci, Ozan
    Wang, Ye
    Koike-Akino, Toshiaki
    Erdogmus, Deniz
    IEEE ACCESS, 2020, 8 : 27074 - 27085
  • [34] Automated Generation of State Abstraction Functions using Data Invariant Inference
    Tonella, Paolo
    Cu Duy Nguyen
    Marchetto, Alessandro
    Lakhotia, Kiran
    Harman, Mark
    2013 8TH INTERNATIONAL WORKSHOP ON AUTOMATION OF SOFTWARE TEST (AST), 2013, : 75 - 81
  • [35] Invariant classification of metrics using invariant formalism
    Machado Ramos, M. P.
    Edgar, S. B.
    Bradley, M.
    SPANISH RELATIVITY MEETING (ERE 2009), 2010, 229
  • [36] Domain Adaptation by Using Causal Inference to Predict Invariant Conditional Distributions
    Magliacane, Sara
    van Ommen, Thijs
    Claassen, Tom
    Bongers, Stephan
    Versteeg, Philip
    Mooij, Joris M.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [37] Maximum entropy inference of seabed properties using waveguide invariant features from surface ships
    Knobles, D. P.
    Neilsen, T. B.
    Wilson, P. S.
    Hodgkiss, W. S.
    Bonnel, J.
    Lin, Y. T.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2022, 151 (05): : 2885 - 2896
  • [38] Invariant Feature Learning Based on Causal Inference from Heterogeneous Environments
    Su, Hang
    Wang, Wei
    MATHEMATICS, 2024, 12 (05)
  • [39] TECHNICAL PERSPECTIVE: Checking Invariant Confluence, In Whole or In Parts
    Gehrke, Johannes
    SIGMOD RECORD, 2020, 49 (01) : 6 - 6
  • [40] Compositional Invariant Checking for Overlaid and Nested Linked Lists
    Enea, Constantin
    Saveluc, Vlad
    Sighireanu, Mihaela
    PROGRAMMING LANGUAGES AND SYSTEMS, 2013, 7792 : 129 - 148