Accuracy of the diffusion approximation in determining the optical properties of a two-layer turbid medium

被引:86
|
作者
Alexandrakis, G
Farrell, TJ
Patterson, MS
机构
[1] Hamilton Reg Canc Ctr, Dept Phys Med, Hamilton, ON L8V 5C2, Canada
[2] McMaster Univ, Hamilton, ON L8V 5C2, Canada
来源
APPLIED OPTICS | 1998年 / 37卷 / 31期
关键词
D O I
10.1364/AO.37.007401
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We have have examined the possibility of determining the optical properties of a two-layer medium by using a diffusion approximation radiation transport model [Appl. Opt. 37, 779 (1998)]. Continuous-wave and frequency-domain (FD) low-noise Monte Carlo (NIC) data were fitted to the model. Marquardt-Levenberg and a simulated annealing algorithm were used and compared as optimization techniques. Our particular choice of optical properties for the two-layer model was consistent with skin and underlying fat in the presence of an exogenous chromophore [Appl. Opt. 37, 1958 (1998)]. The results are therefore specific to this set of optical properties. It was found that the cw diffusion solution could never be used to estimate all optical properties reliably. The combined cw and FD solutions could not be used to estimate some of the top-layer optical properties to an accuracy of better than 10%, although the absorption and the transport scattering coefficients of the bottom layer could be estimated to within 7% and 0.5%, respectively. No improvement was found from simultaneously fitting MC data at three different modulation frequencies. These results point to the need for a more accurate radiation transfer model at small source-detector separations. (C) 1998 Optical Society of America OCIS codes: 170.3660, 170.4090, 290.1990, 290.7050.
引用
收藏
页码:7401 / 7409
页数:9
相关论文
共 50 条
  • [31] PHOTON MIGRATION IN A 2-LAYER TURBID MEDIUM - A DIFFUSION ANALYSIS
    DAYAN, I
    HAVLIN, S
    WEISS, GH
    JOURNAL OF MODERN OPTICS, 1992, 39 (07) : 1567 - 1582
  • [32] Optimal two-layer approximation for continuous density stratification
    Camassa, R.
    Tiron, R.
    JOURNAL OF FLUID MECHANICS, 2011, 669 : 32 - 54
  • [33] Three-Layer Approximation of Two-Layer Shallow Water Equations
    Chertock, Alina
    Kurganov, Alexander
    Qu, Zhuolin
    Wu, Tong
    MATHEMATICAL MODELLING AND ANALYSIS, 2013, 18 (05) : 675 - 693
  • [34] Direct characterization and removal of interfering absorption trends in two-layer turbid media
    Saager, RB
    Berger, AJ
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2005, 22 (09) : 1874 - 1882
  • [35] Surface Impedance of a Highly Inductive Two-layer Medium
    Balkhanov, V. K.
    Bashkuev, Yu. B.
    Angarkhaeva, L. Kh.
    TECHNICAL PHYSICS, 2018, 63 (03) : 438 - 442
  • [36] Surface Impedance of a Highly Inductive Two-layer Medium
    V. K. Balkhanov
    Yu. B. Bashkuev
    L. Kh. Angarkhaeva
    Technical Physics, 2018, 63 : 438 - 442
  • [37] Double cycle of solar activity in a two-layer medium
    E. P. Popova
    K. A. Potemina
    N. A. Yukhina
    Geomagnetism and Aeronomy, 2014, 54 : 877 - 881
  • [38] LOCATION IN THE TWO-LAYER MEDIUM WITH THE HELP OF SIMPLIFIED DETECTORS
    Velichko, E. V.
    RADIO ELECTRONICS COMPUTER SCIENCE CONTROL, 2013, 1 : 25 - 29
  • [39] Sensitivity studies for imaging a spherical object embedded in a spherically symmetric, two-layer turbid medium with photon-density waves
    Yao, YQ
    Barbour, RL
    Wang, Y
    Graber, HL
    Chang, J
    APPLIED OPTICS, 1996, 35 (04): : 735 - 751
  • [40] Double Cycle of Solar Activity in a Two-Layer Medium
    Popova, E. P.
    Potemina, K. A.
    Yukhina, N. A.
    GEOMAGNETISM AND AERONOMY, 2014, 54 (07) : 877 - 881