Modelling the solar twin 18 Scorpii

被引:16
|
作者
Bazot, M. [1 ,2 ]
Creevey, O. [3 ]
Christensen-Dalsgaard, J. [4 ]
Melendez, J. [5 ]
机构
[1] New York Univ Abu Dhabi, Ctr Space Sci, NYUAD Inst, POB 129188, Abu Dhabi, U Arab Emirates
[2] New York Univ, Div Sci, Abu Dhabi, U Arab Emirates
[3] Univ Cote Azur, Observ Cote Azur, CNRS, Lab Lagrange, Bd Observ,CS 34229, F-06304 Nice 4, France
[4] Aarhus Univ, Stellar Astrophys Ctr, Dept Phys & Astron, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
[5] Univ Sao Paulo, Dept Astron, IAG, Rua Matao 1226, BR-05508900 Sao Paulo, SP, Brazil
基金
新加坡国家研究基金会;
关键词
stars: individual: 18 Sco; stars: solar-type; stars: evolution; asteroseismology; methods: data analysis; methods: statistical; EQUATION-OF-STATE; PRIMORDIAL HELIUM ABUNDANCE; OSCILLATION FREQUENCIES; STARS; ASTEROSEISMOLOGY; SEISMOLOGY; DIAMETERS; SEARCH; MASS; SUN;
D O I
10.1051/0004-6361/201834058
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. Solar twins are objects of great interest in that they allow us to understand better how stellar evolution and structure are affected by variations of the stellar mass, age and chemical composition in the vicinity of the commonly accepted solar values. Aims. We aim to use the existing spectrophotometric, interferometric and asteroseismic data for the solar twin 18 Sco to constrain stellar evolution models. 18 Sco is the brightest solar twin and is a good benchmark for the study of solar twins. The goal is to obtain realistic estimates of its physical characteristics (mass, age, initial chemical composition, mixing-length parameter) and realistic associated uncertainties using stellar models. Methods. We set up a Bayesian model that relates the statistical properties of the data to the probability density of the stellar parameters. Special care is given to the modelling of the likelihood for the seismic data, using Gaussian mixture models. The probability densities of the stellar parameters are approximated numerically using an adaptive MCMC algorithm. From these approximate distributions we proceeded to a statistical analysis. We also performed the same exercise using local optimisation. Results. The precision on the mass is approximately 6%. The precision reached on X-0 and Z(0) and the mixing-length parameter are respectively 6%, 9%, and 35%. The posterior density for the age is bimodal, with modes at 4.67 Gyr and 6.95 Gyr, the first one being slightly more likely. We show that this bimodality is directly related to the structure of the seismic data. When asteroseismic data or interferometric data are excluded, we find significant losses of precision for the mass and the initial hydrogen-mass fraction. Our final estimates of the uncertainties from the Bayesian analysis are significantly larger than values inferred from local optimization. This also holds true for several estimates of the age encountered in the literature.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Towards a Digital Twin Modelling Notation
    Corradini, Flavin
    Fedeli, Arianna
    Polini, Andrea
    Re, Barbara
    2022 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PICOM/CBDCOM/CYBERSCITECH), 2022, : 144 - 149
  • [22] Modelling of Twin Rotor MIMO System
    Chalupa, Petr
    Prikryl, Jan
    Novak, Jakub
    25TH DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION, 2014, 2015, 100 : 249 - 258
  • [23] Modelling of Multiphase Twin Screw Machines
    Kovacevic, Ahmed
    Rane, Sham
    Stosic, Nikola
    NEW TECHNOLOGIES, DEVELOPMENT AND APPLICATION, 2019, 42 : 18 - 32
  • [24] Modelling the influence of amnionicity on the severity of twin-twin transfusion syndrome in monochorionic twin pregnancies
    van den Wijngaard, JPHM
    Umur, A
    Ross, MG
    van Gemert, MJC
    PHYSICS IN MEDICINE AND BIOLOGY, 2004, 49 (06): : N57 - N64
  • [25] 18 Sco: A SOLAR TWIN RICH IN REFRACTORY AND NEUTRON-CAPTURE ELEMENTS. IMPLICATIONS FOR CHEMICAL TAGGING
    Melendez, Jorge
    Ramirez, Ivan
    Karakas, Amanda I.
    Yong, David
    Monroe, TalaWanda R.
    Bedell, Megan
    Bergemann, Maria
    Asplund, Martin
    Maia, Marcelo Tucci
    Bean, Jacob
    do Nascimento, Jose-Dias, Jr.
    Bazot, Michael
    Alves-Brito, Alan
    Freitas, Fabricio C.
    Castro, Matthieu
    ASTROPHYSICAL JOURNAL, 2014, 791 (01):
  • [26] Solar radiation modelling
    Zaksek, K
    Podobnikar, T
    Ostir, K
    COMPUTERS & GEOSCIENCES, 2005, 31 (02) : 233 - 240
  • [27] Modelling the solar corona
    不详
    ASTRONOMY & GEOPHYSICS, 2006, 47 (04) : 5 - 5
  • [28] Modelling of solar mesogranulation
    Matloch, L.
    Cameron, R.
    Schmitt, D.
    Schuessler, M.
    ASTRONOMY & ASTROPHYSICS, 2009, 504 (03) : 1041 - U52
  • [29] Modelling the solar interior
    Basu, Sarbani
    KODAI SCHOOL ON SOLAR PHYSICS, 2007, 919 : 1 - 23
  • [30] Modelling of the twin-entry turbocharger turbine
    Katrasnik, T.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2007, 221 (D4) : 481 - 496