Quantum geometry and quantization on U(u(2)) background. Noncommutative Dirac monopole

被引:2
|
作者
Gurevich, Dimitri [1 ]
Saponov, Pavel [2 ,3 ]
机构
[1] Univ Valenciennes, LAMAV, F-59313 Valenciennes, France
[2] Natl Res Univ, Higher Sch Econ, Int Lab Representat Theory & Math Phys, 20 Myasnitskaya Ulitsa, Moscow 101000, Russia
[3] Natl Res Ctr, Kurchatov Inst, Inst High Energy Phys, State Res Ctr Russian Federat, Protvino, Russia
关键词
Quantum partial derivatives; Leibniz rule; Weyl-Heisenberg algebra; Noncommutative configuration space; Maxwell system; Dirac monopole; Q-MINKOWSKI SPACE; EQUATIONS; ALGEBRAS;
D O I
10.1016/j.geomphys.2016.03.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In our previous publications we introduced differential calculus on the enveloping algebras U (gl(m)) similar to the usual calculus on the commutative algebra Sym(gl(m)). The main ingredients of our calculus are quantum partial derivatives which turn into the usual partial derivatives in the classical limit. In the particular case m = 2 we prolonged this calculus on a central extension A of the algebra U (gl(2)). In the present paper we consider the problem of a further extension of the quantum partial derivatives on the skew-field of the algebra A and define the corresponding de Rham complex. As an application of the differential calculus we suggest a method of transferring dynamical models defined on an extended Sym(u(2)) to an extended algebra U(u(2)). We call this procedure the quantization with noncommutative configuration space. In this sense we quantize the Dirac monopole and find a solution of this model. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:87 / 97
页数:11
相关论文
共 50 条
  • [31] Quantum action for electroweak SU(2/1) with noncommutative geometry
    Ne'eman, Y
    Hwang, DS
    Lee, CY
    GROUP 21 - PHYSICAL APPLICATIONS AND MATHEMATICAL ASPECTS OF GEOMETRY, GROUPS, AND ALGEBRA, VOLS 1 AND 2, 1997, : 553 - 563
  • [32] Quantum Codes from Constacyclic Codes over the Ring Fq[u1, u2]/⟨u12 - u1,u22 - u2, u1u2 - u2u1⟩
    Alkenani, Ahmad N.
    Ashraf, Mohammad
    Mohammad, Ghulam
    MATHEMATICS, 2020, 8 (05)
  • [33] The U(1) BF functional measure and the Dirac distribution on the space of quantum fields
    Thuillier, F.
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (11)
  • [34] Noncommutative 2+1 dimensional Dirac oscillator and quantum phase transition
    Hou, Yu-Long
    Wang, Qing
    Long, Zheng-Wen
    Jing, Jian
    ANNALS OF PHYSICS, 2015, 354 : 10 - 20
  • [35] Notes on the dynamics of noncommutative U(2) and commutative SU(3) instantons
    Smith, Douglas J.
    Robson, Calum J.
    Farrow, Joseph A.
    PHYSICAL REVIEW D, 2022, 106 (04)
  • [36] Four-dimensional quantum oscillator and magnetic monopole with U(1) dynamical group
    Bakhshi, Z.
    Panahi, H.
    Golchehre, S. G.
    MODERN PHYSICS LETTERS A, 2017, 32 (30)
  • [37] On quantum Hall effect, Kosterlitz-Thouless phase transition, Dirac magnetic monopole, and Bohr-Sommerfeld quantization
    Buot, Felix A.
    Elnar, Allan Roy
    Maglasang, Gibson
    Otadoy, Roland E. S.
    JOURNAL OF PHYSICS COMMUNICATIONS, 2021, 5 (02): : 1 - 29
  • [38] The AdSθ2/CFT1 correspondence and noncommutative geometry II: Noncommutative quantum black holes
    Ydri, Badis
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2022, 37 (13):
  • [39] Quantum Monte Carlo study of a bilayer U(2)×U(2) -symmetric Hubbard model
    Caplan, Yosef
    Orgad, Dror
    Physical Review B, 2023, 108 (16):
  • [40] On the classification of compact quantum groups Uθ(2)
    XiaoXia Zhang
    Science China Mathematics, 2010, 53 : 1293 - 1306