Quantum geometry and quantization on U(u(2)) background. Noncommutative Dirac monopole

被引:2
|
作者
Gurevich, Dimitri [1 ]
Saponov, Pavel [2 ,3 ]
机构
[1] Univ Valenciennes, LAMAV, F-59313 Valenciennes, France
[2] Natl Res Univ, Higher Sch Econ, Int Lab Representat Theory & Math Phys, 20 Myasnitskaya Ulitsa, Moscow 101000, Russia
[3] Natl Res Ctr, Kurchatov Inst, Inst High Energy Phys, State Res Ctr Russian Federat, Protvino, Russia
关键词
Quantum partial derivatives; Leibniz rule; Weyl-Heisenberg algebra; Noncommutative configuration space; Maxwell system; Dirac monopole; Q-MINKOWSKI SPACE; EQUATIONS; ALGEBRAS;
D O I
10.1016/j.geomphys.2016.03.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In our previous publications we introduced differential calculus on the enveloping algebras U (gl(m)) similar to the usual calculus on the commutative algebra Sym(gl(m)). The main ingredients of our calculus are quantum partial derivatives which turn into the usual partial derivatives in the classical limit. In the particular case m = 2 we prolonged this calculus on a central extension A of the algebra U (gl(2)). In the present paper we consider the problem of a further extension of the quantum partial derivatives on the skew-field of the algebra A and define the corresponding de Rham complex. As an application of the differential calculus we suggest a method of transferring dynamical models defined on an extended Sym(u(2)) to an extended algebra U(u(2)). We call this procedure the quantization with noncommutative configuration space. In this sense we quantize the Dirac monopole and find a solution of this model. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:87 / 97
页数:11
相关论文
共 50 条
  • [1] Dirac operator on fuzzy sphere with U(1) Dirac monopole background
    Xiong, CH
    Yue, RH
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2004, 42 (02) : 247 - 250
  • [2] Dirac Operator on Fuzzy Sphere with U(1)Dirac Monopole Background
    XIONG Chuan-Hua YUE Rui-Hong Institute of Modern Physics
    CommunicationsinTheoreticalPhysics, 2004, 42 (08) : 247 - 250
  • [3] Noncommutative geometry on central extension of U(u(2))
    Gurevich, Dimitry
    Saponov, Pavel
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (06)
  • [4] Noncommutative geometry on the algebra U(su2) and quantization of coadjoint orbits
    Batista, E
    Majid, S
    GROUP 24 : PHYSICAL AND MATHEMATICAL ASPECTS OF SYMMETRIES, 2003, 173 : 435 - 438
  • [5] U(2) GAUGE THEORY ON NONCOMMUTATIVE GEOMETRY
    Zet, G.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2009, 24 (15): : 2889 - 2897
  • [6] Dirac quantization condition for monopole in noncommutative space-time
    Chaichian, Masud
    Ghosh, Subir
    Langvik, Miklos
    Tureanu, Anca
    PHYSICAL REVIEW D, 2009, 79 (12):
  • [7] Noncommutative geometry, quantum nonlocality and stochastic quantization
    Ghosh, P
    MODERN PHYSICS LETTERS A, 2001, 16 (24) : 1543 - 1548
  • [8] Noncommutative geometry of angular momentum space U(su(2))
    Batista, E
    Majid, S
    JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (01) : 107 - 137
  • [9] Dirac operator on quantum homogeneous spaces and noncommutative geometry
    Owczarek, RM
    CLIFFORD ALGEBRAS: APPLICATIONS TO MATHEMATICS, PHYSICS, AND ENGINEERING, 2004, 34 : 519 - 530
  • [10] Monopole excitations in the U (1) Dirac spin liquid on the triangular lattice
    Budaraju, Sasank
    Parola, Alberto
    Iqbal, Yasir
    Becca, Federico
    Poilblanc, Didier
    PHYSICAL REVIEW B, 2025, 111 (12)