Tangent measures of non-doubling measures

被引:2
|
作者
Orponen, Tuomas [1 ]
Sahlsten, Tuomas [1 ]
机构
[1] Univ Helsinki, Dept Math & Stat, FIN-00014 Helsinki, Finland
关键词
D O I
10.1017/S0305004111000818
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a non-doubling measure on the real line, all tangent measures of which are equivalent to Lebesgue measure.
引用
收藏
页码:555 / 569
页数:15
相关论文
共 50 条
  • [21] Endpoint Estimates for Multilinear Fractional Integrals with Non-doubling Measures
    Lin, Hai-bo
    Yang, Da-chun
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2014, 30 (03): : 755 - 764
  • [22] Boundedness of strong maximal functions with respect to non-doubling measures
    Wei Ding
    LiXin Jiang
    YuePing Zhu
    Journal of Inequalities and Applications, 2016
  • [23] Endpoint Estimates for Multilinear Fractional Integrals with Non-doubling Measures
    Haibo LIN
    Dachun YANG
    Acta Mathematicae Applicatae Sinica(English Series), 2014, 30 (03) : 755 - 764
  • [24] Endpoint estimates for multilinear fractional integrals with non-doubling measures
    Hai-bo Lin
    Da-chun Yang
    Acta Mathematicae Applicatae Sinica, English Series, 2014, 30 : 755 - 764
  • [25] Estimates for fractional type Marcinkiewicz integrals with non-doubling measures
    Guanghui Lu
    Jiang Zhou
    Journal of Inequalities and Applications, 2014
  • [26] Boundedness of strong maximal functions with respect to non-doubling measures
    Ding, Wei
    Jiang, LiXin
    Zhu, YuePing
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [27] MULTIFRACTAL ANALYSIS OF INHOMOGENEOUS MULTINOMIAL MEASURES WITH NON-DOUBLING PROJECTIONS
    Selmi, Bilel
    Shen, Shuang
    Yuan, Zhihui
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2025,
  • [28] Θ-type Calderon-Zygmund Operators with Non-doubling Measures
    Xie, Ru-long
    Shu, Li-sheng
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2013, 29 (02): : 263 - 280
  • [29] The John-Nirenberg type inequality for non-doubling measures
    Sawano, Yoshihiro
    Tanaka, Hitoshi
    STUDIA MATHEMATICA, 2007, 181 (02) : 153 - 170
  • [30] Endpoint Estimates for Multilinear Fractional Integrals with Non-doubling Measures
    Hai-bo LIN
    Da-chun YANG
    Acta Mathematicae Applicatae Sinica, 2014, (03) : 755 - 764