Self-paced collaborative representation with manifold weighting for hyperspectral anomaly detection

被引:4
|
作者
Ji, Yantao [1 ]
Jiang, Peilin [1 ]
Guo, Yu [1 ]
Zhang, Ruiteng [2 ]
Wang, Fei [3 ]
机构
[1] Xi An Jiao Tong Univ, Sch Software Engn, Xian, Peoples R China
[2] Tianjin Univ, Coll Intelligence & Comp, Tianjin, Peoples R China
[3] Xi An Jiao Tong Univ, Coll Artificial Intelligence, Xian, Peoples R China
关键词
Hyperspectral image (HSI); anomaly detection; collaborative representation; self-paced learning (SPL); RX-ALGORITHM;
D O I
10.1080/2150704X.2022.2057824
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
In the acquisition process of hyperspectral images (HSIs), each band may be contaminated with different degrees of mixing noise. For hyperspectral anomaly detection (HAD) tasks, bands with higher noise contamination levels provide more interference information, thus affecting the detection results. In order to reduce the negative effect of noise in HSIs and improve the robustness of the detector, we propose a self-paced collaborative representation with manifold weighting hyperspectral anomaly detector (SPCRMW). Each band is given an order to join the collaborative representation model according to the degree of noise contamination. Moreover, a novel manifold learning reconstruction-based regularization matrix is proposed to reduce the effect of potential anomalous pixels mixed in the background on collaborative representations. It can automatically assign weights to the background pixels by manifold learning reconstruction error. The results compared with six state-of-the-art HAD methods on three real hyperspectral datasets are presented and illustrate the superiority of the proposed SPCRMW method.
引用
收藏
页码:599 / 610
页数:12
相关论文
共 50 条
  • [31] ADAPTIVE DICTIONARY CONSTRUCTION FOR HYPERSPECTRAL ANOMALY DETECTION BASED ON COLLABORATIVE REPRESENTATION
    Wu, Z.
    Su, H.
    Tao, X.
    Han, L.
    Paoletti, M. E.
    Haut, J. M.
    Plaza, J.
    Plaza, A.
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1979 - 1982
  • [32] Collaborative representation with background purification and saliency weight for hyperspectral anomaly detection
    Zengfu HOU
    Wei LI
    Ran TAO
    Pengge MA
    Weihua SHI
    Science China(Information Sciences), 2022, 65 (01) : 247 - 258
  • [33] SELF-PACED LEARNING WITH SUPERPIXELWISE FEATURES FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Tai, Xiaoxiao
    Wang, Guangxing
    Han, Lirong
    Zhang, Xiaoyu
    Ren, Peng
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 60 - 63
  • [34] Self-Paced Collaborative and Adversarial Network for Unsupervised Domain Adaptation
    Zhang, Weichen
    Xu, Dong
    Ouyang, Wanli
    Li, Wen
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (06) : 2047 - 2061
  • [35] Weighted Collaborative Representation and Sparse Difference-Based Hyperspectral Anomaly Detection
    Wang, Qianghui
    Hua, Wenshen
    Huang, Fuyu
    Zhang, Yan
    Yan, Yang
    CURRENT OPTICS AND PHOTONICS, 2020, 4 (03) : 210 - 220
  • [36] Graph Regularized Low-Rank and Collaborative Representation for Hyperspectral Anomaly Detection
    Wu Qi
    Fan Yanguo
    Fan Bowen
    Yu Dingfeng
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (12)
  • [37] A BACKGROUND REFINEMENT COLLABORATIVE REPRESENTATION METHOD WITH SALIENCY WEIGHT FOR HYPERSPECTRAL ANOMALY DETECTION
    Hou, Zengfu
    Li, Wei
    Gao, Lianru
    Zhang, Bing
    Ma, Pengge
    Sun, Junling
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2412 - 2415
  • [38] Saliency-Guided Collaborative-Competitive Representation for Hyperspectral Anomaly Detection
    Yang, Yufan
    Su, Hongjun
    Wu, Zhaoyue
    Du, Qian
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 6843 - 6859
  • [39] Hyperspectral anomaly detection based on adaptive background dictionary construction and collaborative representation
    Xu, Mingming
    Zhang, Jinhao
    Liu, Shanwei
    Sheng, Hui
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2024, 45 (10) : 3349 - 3369
  • [40] Anomaly detection using morphology-based collaborative representation in hyperspectral imagery
    Imani, Maryam
    EUROPEAN JOURNAL OF REMOTE SENSING, 2018, 51 (01): : 457 - 471