A note on marginal and conditional independence

被引:0
|
作者
Loperfido, Nicola [1 ]
机构
[1] Univ Urbino Carlo Bo, Dipartimento Econ & Metodi Quantitat, I-61029 Urbino, PU, Italy
关键词
Bayes linear analysis; Canonical correlation analysis; Elliptical distributions; Sylvester law of nullity; Unrelated parameters; SUFFICIENCY; CAUSALITY; MODELS;
D O I
10.1016/j.spl.2010.07.007
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Some statistical models imply that two random vectors are marginally independent as well as being conditionally independent with respect to another random vector. When the joint distribution of the vectors is normal, canonical correlation analysis may lead to relevant simplifications of the dependence structure. A similar application can be found in elliptical models, where linear independence does not imply statistical independence. Implications for Bayes analysis of the general linear model are discussed. (c) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1695 / 1699
页数:5
相关论文
共 50 条
  • [21] CONDITIONAL INDEPENDENCE
    BECK, A
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1976, 33 (04): : 253 - 267
  • [22] Conditional independence, conditional mixing and conditional association
    B. L. S. Prakasa Rao
    Annals of the Institute of Statistical Mathematics, 2009, 61 : 441 - 460
  • [23] Conditional independence, conditional mixing and conditional association
    Rao, B. L. S. Prakasa
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2009, 61 (02) : 441 - 460
  • [24] A note on the relationship between conditional and unconditional independence and its extensions for Markov kernels
    Nogales, A. G.
    Perez, P.
    STATISTICA NEERLANDICA, 2019, 73 (03) : 320 - 332
  • [25] Marginal Independence Models
    Boege, Tobias
    Petrovic, Sonja
    Sturmfels, Bernd
    PROCEEDINGS OF THE 2022 INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, ISSAC 2022, 2022, : 263 - 271
  • [26] CONDITIONAL MARGINAL TEST FOR
    Tang, Yanlin
    Wang, Yinfeng
    Wang, Huixia Judy
    Pan, Qing
    STATISTICA SINICA, 2022, 32 (02) : 869 - 892
  • [27] MARGINAL AND CONDITIONAL LIKELIHOODS
    KALBFLEISH, JD
    SPROTT, DA
    SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 1973, 35 (SEP): : 311 - 328
  • [28] MARGINAL AND CONDITIONAL SUFFICIENCY
    SPROTT, DA
    BIOMETRIKA, 1975, 62 (03) : 599 - 605
  • [29] Conditional moments and independence
    de Paula, Aureo
    AMERICAN STATISTICIAN, 2008, 62 (03): : 219 - 221
  • [30] Conditional Moments and Independence
    Hamedani, G. G.
    Volkmer, H. W.
    AMERICAN STATISTICIAN, 2009, 63 (03): : 295 - 295