ACCELERATION OF KVAZAAR HEVC INTRA ENCODER WITH MACHINE LEARNING

被引:0
|
作者
Mercat, Alexandre [1 ]
Lemmetti, Ari [1 ]
Viitanen, Marko [1 ]
Vanne, Jarno [1 ]
机构
[1] Tampere Univ, Korkeakoulunkatu 10, Tampere 33720, Finland
基金
芬兰科学院;
关键词
High Efficiency Video Coding (HEVC); Intra Encoder; Machine Learning (ML); Complexity Reduction; Quad-Tree;
D O I
10.1109/icip.2019.8803288
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
The complexity of High Efficiency Video Coding (HEVC) poses a real challenge to HEVC encoder implementations. Particularly, the complexity stems from the HEVC quad-tree structure that also has an integral part in HEVC coding efficiency. This paper presents a Machine Learning (ML) based technique for pruning the HEVC quad-tree without deteriorating coding gain. We show how ML decision trees can be used to predict a depth interval for a quad-tree before the Rate-Distortion Optimization (RDO). This approach limits the number of RDO candidates and thus speeds up encoding. The proposed technique works particularly well with high-quality video coding and it is shown to accelerate the veryslow preset of practical Kvazaar HEVC intra encoder by 1.35x with 0.49% bit rate increase. Compared with the corresponding preset of x265 encoder, Kvazaar is 2.12x as fast at a cost of under 1.21% bit rate overhead. These results indicate that the optimized Kvazaar is the leading open-source encoder in high-quality HEVC intra coding.
引用
收藏
页码:2676 / 2680
页数:5
相关论文
共 50 条
  • [31] A computationally scalable fast intra coding scheme for HEVC video encoder
    Elahe Hosseini
    Farhad Pakdaman
    Mahmoud Reza Hashemi
    Mohammad Ghanbari
    Multimedia Tools and Applications, 2019, 78 : 11607 - 11630
  • [32] A computationally scalable fast intra coding scheme for HEVC video encoder
    Hosseini, Elahe
    Pakdaman, Farhad
    Hashemi, Mahmoud Reza
    Ghanbari, Mohammad
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (09) : 11607 - 11630
  • [33] Convolutional neural network based low complexity HEVC intra encoder
    Wang, Zixi
    Li, Fan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (02) : 2441 - 2460
  • [34] Acceleration of an Optimized Kvazaar All Intra Prediction on Embedded Systems Based on the Directional Texture Complexity
    Majok, James R.
    Abo-Zahhad, Mohammed
    Inoue, Koji
    Sayed, Mohammed S.
    IEEE EMBEDDED SYSTEMS LETTERS, 2025, 17 (01) : 38 - 41
  • [35] Fast CU size decision algorithm using machine learning for HEVC intra coding
    Lee, Dokyung
    Jeong, Jechang
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2018, 62 : 33 - 41
  • [36] Modeling Acceleration Properties for Flexible INTRA HEVC Complexity Control
    Huang, Yan
    Song, Li
    Xie, Rong
    Izquierdo, Ebroul
    Zhang, Wenjun
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (11) : 4454 - 4469
  • [37] Performance evaluation of all intra Kvazaar and x265 HEVC encoders on embedded system Nvidia Jetson platform
    James, R.
    Abo-Zahhad, Mohammed
    Inoue, Koji
    Sayed, Mohammed S.
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2024, 21 (03)
  • [38] Profiling of HEVC encoder
    Saab, F.
    Elhajj, I. H.
    Kayssi, A.
    Chehab, A.
    ELECTRONICS LETTERS, 2014, 50 (15) : 1062 - U40
  • [39] Performance Exploration of Jointly Rate-Distortion Optimized HEVC Intra Encoder
    Zhang, Yingwen
    Wang, Meng
    Li, Junru
    Wang, Shiqi
    2024 DATA COMPRESSION CONFERENCE, DCC, 2024, : 603 - 603
  • [40] CNN ORIENTED FAST PU MODE DECISION FOR HEVC HARDWIRED INTRA ENCODER
    Song, Nan
    Liu, Zhenyu
    Ji, Xiangyang
    Wang, Dongsheng
    2017 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2017), 2017, : 239 - 243