Estimation of PM2.5 concentrations at a high spatiotemporal resolution using constrained mixed-effect bagging models with MAIAC aerosol optical depth

被引:36
|
作者
Li, Lianfa [1 ,2 ]
Zhang, Jiehao [1 ]
Meng, Xia [3 ]
Fang, Ying [1 ]
Ge, Yong [1 ]
Wang, Jinfeng [1 ]
Wang, Chengyi [4 ]
Wu, Jun [5 ]
Kan, Haidong [2 ]
机构
[1] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing, Peoples R China
[2] Fudan Univ, Shanghai Key Lab Atmospher Particle Pollut & Prev, Shanghai, Peoples R China
[3] Emory Univ, Dept Environm Hlth, Rollins Sch Publ Hlth, Atlanta, GA 30322 USA
[4] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing, Peoples R China
[5] Univ Calif Irvine, Susan & Henry Samueli Coll Hlth Sci, Program Publ Hlth, Irvine, CA 92697 USA
关键词
PM2.5; MAIAC AOD; High spatiotemporal resolution; Temporal variation; AOD-PM2.5; associations; Spatial effects; Missingness; Machine learning; LAND-USE REGRESSION; PARTICULATE MATTER; AIR-POLLUTION; METEOROLOGICAL VARIABLES; SATELLITE; CHINA; QUALITY; RETRIEVALS; PREDICTION; EXPOSURES;
D O I
10.1016/j.rse.2018.09.001
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Exposure estimation of fine particulate matter with diameter < 2.5 mu m (PM2.5) at high spatiotemporal resolution is crucial to epidemiological studies that examine acute or sub-chronic health outcomes of PM2.5. However, exposure assessment of PM2.5 has been negatively affected by sparsely distributed monitoring stations. In addition, several limitations exist among the existing methods for high spatiotemporal resolution PM2.5 estimation, including ignorance or limited use of spatial autocorrelation, single-model methods, and use of aerosol optical depth data with non-random missingness. These limitations probably introduce bias or high uncertainty in model estimation. In this paper, we proposed an approach of constrained mixed-effect bagging models to leverage advanced algorithm of the high-resolution AOD retrieved by Multi-Angle Implementation of Atmospheric Correction (MAIAC), with other spatiotemporal predictors and spatial autocorrelation to reliably estimate PM2.5 at a high spatiotemporal resolution. Our base model was a daily mixed-effect spatial model that accounted for spatial autocorrelation using embedded structured and unstructured spatial random effects. Point estimates from the base models were then averaged based on the bootstrap aggregating (bagging) to reduce variance in prediction. Then, constrained optimization was developed to minimize the impact of missing AOD and to capture a full time-series of PM2.5 concentration. Our daily-level bagging allowed AOD-PM2.5 association and spatial autocorrelation to vary daily, which substantially improved the model performance. As a case study of daily PM2.5 predictions in 2014 in Shandong Province, China, our approach achieved R-2 of 0.87 (RMSE: 18.6 mu g/m(3)) in cross validation, and R-2 of 0.75 (RMSE: 20.6 mu g/m(3)) in an independent test, similar to or better than most existing methods. We further extended the 2014 models to simulate 2014-2016 full time-series of biweekly average PM2.5 concentrations with no use of covariates in 2015-2016 but constrained optimization over 2014 daily point estimates; the results showed well-captured temporal trend with a total correlation of 0.81 between the simulated and observed values from 2015 to 2016. Our approach can be applied for other regions for exposure estimation of PM2.5 when measurements alone are not able to capture the desirable spatial and temporal resolutions.
引用
收藏
页码:573 / 586
页数:14
相关论文
共 50 条
  • [41] High-resolution spatiotemporal mapping of PM2.5 concentrations at Mainland China using a combined BME-GWR technique
    Xiao, Lu
    Lang, Yichao
    Christakos, George
    ATMOSPHERIC ENVIRONMENT, 2018, 173 : 295 - 305
  • [42] PM2.5 concentrations estimation using machine learning methods with combination of MAIAC - MODIS AOD product - a case study in western Iran
    Fathollahi, Loghman
    Wu, Falin
    Maleki, Reza
    Pongracic, Barbara
    AIR QUALITY ATMOSPHERE AND HEALTH, 2023, 16 (08): : 1529 - 1541
  • [43] A new hybrid spatio-temporal model for estimating daily multi-year PM2.5 concentrations across northeastern USA using high resolution aerosol optical depth data
    Kloog, Itai
    Chudnovsky, Alexandra A.
    Just, Allan C.
    Nordio, Francesco
    Koutrakis, Petros
    Coull, Brent A.
    Lyapustin, Alexei
    Wang, Yujie
    Schwartz, Joel
    ATMOSPHERIC ENVIRONMENT, 2014, 95 : 581 - 590
  • [44] Using deep ensemble forest for high-resolution mapping of PM2.5 from MODIS MAIAC AOD in Tehran, Iran
    Bagheri, Hossein
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2023, 195 (03)
  • [45] A machine learning-based framework for high resolution mapping of PM2.5 in Tehran, Iran, using MAIAC AOD data
    Bagheri, Hossein
    ADVANCES IN SPACE RESEARCH, 2022, 69 (09) : 3333 - 3349
  • [46] Using deep ensemble forest for high-resolution mapping of PM2.5 from MODIS MAIAC AOD in Tehran, Iran
    Hossein Bagheri
    Environmental Monitoring and Assessment, 2023, 195
  • [47] Estimation of surface-level PM2.5 concentration based on MODIS aerosol optical depth over Jeju, Korea
    Kim, Kwanchul
    Lee, Dasom
    Lee, Kwang-yul
    Lee, Kwonho
    Noh, Youngmin
    KOREAN JOURNAL OF REMOTE SENSING, 2016, 32 (05) : 413 - 421
  • [48] Estimating long-term PM2.5 concentrations in China using satellite-based aerosol optical depth and a chemical transport model
    Geng, Guannan
    Zhang, Qiang
    Martin, Randall V.
    van Donkelaar, Aaron
    Huo, Hong
    Che, Huizheng
    Lin, Jintai
    He, Kebin
    REMOTE SENSING OF ENVIRONMENT, 2015, 166 : 262 - 270
  • [49] Comparison of Satellite- based PM2.5 Estimation from Aerosol Optical Depth and Top-of-atmosphere Reflectance
    Bai, Heming
    Zheng, Zhi
    Zhang, Yuanpeng
    Huang, He
    Wang, Li
    AEROSOL AND AIR QUALITY RESEARCH, 2021, 21 (02) : 1 - 17
  • [50] Correlation between the mass concentrations of suspended particles PM10 and PM2.5 and aerosol optical depth in the coastal zone of Lake Baikal
    Dementeva, A. L.
    Zhamsueva, G. S.
    Zayakhanov, A. S.
    27TH INTERNATIONAL SYMPOSIUM ON ATMOSPHERIC AND OCEAN OPTICS, ATMOSPHERIC PHYSICS, 2021, 11916