COUPLING OF THE FINITE VOLUME ELEMENT METHOD AND THE BOUNDARY ELEMENT METHOD: AN A PRIORI CONVERGENCE RESULT

被引:13
|
作者
Erath, Christoph [1 ,2 ]
机构
[1] Natl Ctr Atmospher Res, Boulder, CO 80307 USA
[2] Univ Colorado, Dept Comp Sci, Boulder, CO 80309 USA
关键词
finite volume element method; boundary element method; coupling; existence and uniqueness; convergence; a priori estimate; INTEGRAL-EQUATION; BEM; FEM;
D O I
10.1137/110833944
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The coupling of the finite volume element method and the boundary element method is an interesting approach to simulate a coupled system of a diffusion convection reaction process in an interior domain and a diffusion process in the corresponding unbounded exterior domain. This discrete system maintains naturally local conservation, and a possible weighted upwind scheme guarantees the stability of the discrete system also for convection dominated problems. We show existence and uniqueness of the continuous system with appropriate transmission conditions on the coupling boundary, provide a convergence and an a priori analysis in an energy (semi) norm, and provide an existence and an uniqueness result for the discrete system. All results are also valid for the upwind version. Numerical experiments show that our coupling is an efficient method for the numerical treatment of transmission problems, which can also be convection dominated.
引用
收藏
页码:574 / 594
页数:21
相关论文
共 50 条
  • [21] ON THE IMMERSED BOUNDARY METHOD: FINITE ELEMENT VERSUS FINITE VOLUME APPROACH
    Frisani, Angelo
    Hassan, Yassin A.
    PROCEEDINGS OF THE 20TH INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING AND THE ASME 2012 POWER CONFERENCE - 2012, VOL 5, 2012, : 535 - 547
  • [22] COUPLING OF FINITE-ELEMENT METHOD AND BOUNDARY SOLUTION PROCEDURES
    ZIENKIEWICZ, OC
    KELLY, DW
    BETTESS, P
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1977, 11 (02) : 355 - 375
  • [23] Nonsingular kernel boundary integral and finite element coupling method
    Xu, Liwei
    Zhang, Shangyou
    Hsiao, George C.
    APPLIED NUMERICAL MATHEMATICS, 2019, 137 : 80 - 90
  • [24] The finite volume method in the context of the finite element method
    Wu, Cheng-Chieh
    Volker, Daniel
    Weisbrich, Sven
    Neitzel, Frank
    MATERIALS TODAY-PROCEEDINGS, 2022, 62 : 2679 - 2683
  • [25] C*-convergence in the finite element method
    Bigdeli, B
    Kelly, DW
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1997, 40 (23) : 4405 - 4425
  • [26] RATE OF CONVERGENCE FOR FINITE ELEMENT METHOD
    BABUSKA, I
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1971, 8 (02) : 304 - &
  • [27] THE ORDER OF CONVERGENCE IN THE FINITE ELEMENT METHOD
    Kim, Chang-Geun
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2005, 12 (02): : 153 - 159
  • [28] An hp-adaptive finite element/boundary element coupling method for electromagnetic problems
    E. P. Stephan
    M. Maischak
    F. Leydecker
    Computational Mechanics, 2007, 39 : 673 - 680
  • [29] COUPLING OF THE FINITE-ELEMENT AND BOUNDARY ELEMENT METHOD - THE H-P VERSION
    HEUER, N
    STEPHAN, EP
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1991, 71 (06): : T584 - T586
  • [30] An hp-adaptive finite element/boundary element coupling method for electromagnetic problems
    Stephan, E. P.
    Maischak, M.
    Leydecker, F.
    COMPUTATIONAL MECHANICS, 2007, 39 (05) : 673 - 680