COUPLING OF THE FINITE VOLUME ELEMENT METHOD AND THE BOUNDARY ELEMENT METHOD: AN A PRIORI CONVERGENCE RESULT

被引:13
|
作者
Erath, Christoph [1 ,2 ]
机构
[1] Natl Ctr Atmospher Res, Boulder, CO 80307 USA
[2] Univ Colorado, Dept Comp Sci, Boulder, CO 80309 USA
关键词
finite volume element method; boundary element method; coupling; existence and uniqueness; convergence; a priori estimate; INTEGRAL-EQUATION; BEM; FEM;
D O I
10.1137/110833944
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The coupling of the finite volume element method and the boundary element method is an interesting approach to simulate a coupled system of a diffusion convection reaction process in an interior domain and a diffusion process in the corresponding unbounded exterior domain. This discrete system maintains naturally local conservation, and a possible weighted upwind scheme guarantees the stability of the discrete system also for convection dominated problems. We show existence and uniqueness of the continuous system with appropriate transmission conditions on the coupling boundary, provide a convergence and an a priori analysis in an energy (semi) norm, and provide an existence and an uniqueness result for the discrete system. All results are also valid for the upwind version. Numerical experiments show that our coupling is an efficient method for the numerical treatment of transmission problems, which can also be convection dominated.
引用
收藏
页码:574 / 594
页数:21
相关论文
共 50 条
  • [1] A non-symmetric coupling of the finite volume method and the boundary element method
    Christoph Erath
    Günther Of
    Francisco-Javier Sayas
    Numerische Mathematik, 2017, 135 : 895 - 922
  • [2] A non-symmetric coupling of the finite volume method and the boundary element method
    Erath, Christoph
    Of, Guenther
    Sayas, Francisco-Javier
    NUMERISCHE MATHEMATIK, 2017, 135 (03) : 895 - 922
  • [3] A NEW METHOD FOR COUPLING OF BOUNDARY ELEMENT METHOD AND FINITE-ELEMENT METHOD
    MA, JM
    LE, MF
    APPLIED MATHEMATICAL MODELLING, 1992, 16 (01) : 43 - 46
  • [4] Domain decomposition by coupling of finite element method and boundary element method
    Schnack, E
    Szikrai, S
    Türke, K
    COMPUTATIONAL MECHANICS: TECHNIQUES AND DEVELOPMENTS, 2000, : 69 - 74
  • [5] Coupling of the boundary element method and the scaled boundary finite element method for computations in fracture mechanics
    Chidgzey, S. R.
    Trevelyan, J.
    Deeks, A. J.
    COMPUTERS & STRUCTURES, 2008, 86 (11-12) : 1198 - 1203
  • [6] A mortar element method for coupling natural boundary element method and finite element method for unbounded domain problem
    Zhang, S
    Yu, DH
    RECENT ADVANCES IN ADAPTIVE COMPUTATION, PROCEEDINGS, 2005, 383 : 361 - 374
  • [7] THE COUPLING OF THE FINITE-DIFFERENCE METHOD AND THE BOUNDARY ELEMENT METHOD
    RANGOGNI, R
    REALI, M
    APPLIED MATHEMATICAL MODELLING, 1982, 6 (04) : 233 - 236
  • [8] A study of the convergence of the scaled boundary finite element method
    Deeks, AJ
    Costello, C
    MECHANICS OF STRUCTURES AND MATERIALS, 1999, : 35 - 40
  • [9] NONLINEAR SITE RESPONSE ANALYSIS BY COUPLING SCALED BOUNDARY FINITE ELEMENT METHOD AND FINITE ELEMENT METHOD
    Barghi Kherzeloo, Ali
    Hataf, Nader
    ACTA GEODYNAMICA ET GEOMATERIALIA, 2020, 17 (04): : 397 - 412
  • [10] Convergence in the finite element method
    Mestrovic, M.
    Gradevinar, 1997, 49 (11): : 623 - 631