Barbaloin Promotes Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells: Involvement of Wnt/β-catenin Signaling Pathway

被引:2
|
作者
Wang, Nan [1 ,2 ]
Gan, Guoli [1 ,2 ]
Yang, Jihao [1 ,2 ]
Wang, Luyao [3 ]
机构
[1] Zhengzhou Univ, Affiliated Hosp 1, Dept Emergency Surg, 1 Jianshe East Rd, Zhengzhou 450052, Henan, Peoples R China
[2] Henan Med Key Lab Emergency & Trauma Res, 1 Jianshe East Rd, Zhengzhou 450052, Henan, Peoples R China
[3] Zhengzhou Univ, Stomatol Ctr, Affiliated Hosp 1, 1 Jianshe East Rd, Zhengzhou 450052, Henan, Peoples R China
关键词
Barbaloin; osteogenic differentiation; human bone marrow mesenchymal stem cells; Wnt; beta-catenin; mineralization; OSTEOBLASTS; EXPRESSION;
D O I
10.2174/0929867329666220629150656
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: Barbaloin, found in Aloe vera, exerts broad pharmacological activities, including antioxidant, anti-inflammatory, and anti-cancer. This study aims to investigate the effects of barbaloin on the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). Methods: Osteogenic induction of hBMSCs was performed in the presence or absence of barbaloin. Cell viability was determined by using the CCK-8 assay. The characteristic of hBMSCs was identified by using flow cytometry. Intracellular alkaline phosphatase (ALP) staining was performed to evaluate the ALP activity in hBMSCs. Alizarin Red S staining was performed to evaluate the matrix mineralization. The mRNA and protein levels of target genes were determined using qRT-PCR and western blotting, respectively. Results: Treatment with barbaloin (10 and 20 mu g/mL) significantly increased cell viability of hBMSCs after 72 hours. In addition, treatment with barbaloin increased the mRNA expression levels of ALP and its activities. Treatment with barbaloin also increased matrix mineralization and the mRNA and protein levels of late-differentiated osteoblast marker genes BMP2, RUNX2, and SP7 in hBMSCs. The underlying mechanisms revealed that barbaloin increased the protein expressions of Wnt/beta-catenin pathway-related biomarkers. Conclusion: Barbaloin promotes osteogenic differentiation of hBMSCs by the regulation of the Wnt/beta-catenin signaling pathway.
引用
收藏
页码:6100 / 6111
页数:12
相关论文
共 50 条
  • [31] Interaction Between Endothelial Progenitor Cells and Bone Marrow Mesenchymal Stem Cells Enhances Osteogenic Differentiation via Activation of the Wnt/β-Catenin Signaling Pathway
    Hu, Wanhua
    Chen, Bin
    Xu, Yizhou
    Yang, Zibin
    Wang, Zeyu
    JOURNAL OF BIOLOGICAL REGULATORS AND HOMEOSTATIC AGENTS, 2023, 37 (12): : 7007 - 7019
  • [32] MFG-E8 promotes osteogenic differentiation of human bone marrow mesenchymal stem cells through GSK3β/β-catenin signaling pathway
    Bai, Jinwu
    Zhang, Weijun
    Zhou, Chenwei
    Zhao, Guangfeng
    Zhong, Huiming
    Hang, Kai
    Xu, Jianxiang
    Zhang, Wei
    Chen, Erman
    Wu, Jiaqi
    Liu, Ling
    Xue, Deting
    FASEB JOURNAL, 2023, 37 (06):
  • [33] LncRNAp21 promotes osteogenic differentiation of mesenchymal stem cells in the rat model of osteoporosis by the Wnt/β-catenin signaling pathway
    Yang, K.
    Tian, N.
    Liu, H.
    Tao, X-Z
    Wang, M-X
    Huang, W.
    EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2019, 23 (10) : 4303 - 4309
  • [34] Muscone Promotes The Adipogenic Differentiation Of Human Gingival Mesenchymal Stem Cells By Inhibiting The Wnt/β-Catenin Signaling Pathway
    Yuan, Wen-Xiu
    Wang, Xu-Xia
    Zheng, De-Hua
    Ma, Dan
    Cui, Qun
    Yang, Fan
    Zhang, Jun
    DRUG DESIGN DEVELOPMENT AND THERAPY, 2019, 13 : 3291 - 3306
  • [35] miR-346 Regulates Osteogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells by Targeting the Wnt/β-Catenin Pathway
    Wang, Qing
    Cai, Jie
    Cai, Xian-hua
    Chen, Lei
    PLOS ONE, 2013, 8 (09):
  • [36] CRYAB promotes osteogenic differentiation of human bone marrow stem cells via stabilizing β-catenin and promoting the Wnt signalling
    Zhu, Bin
    Xue, Feng
    Li, Guangyi
    Zhang, Changqing
    CELL PROLIFERATION, 2020, 53 (01)
  • [37] CK1ε drives osteogenic differentiation of bone marrow mesenchymal stem cells via activating Wnt/β-catenin pathway
    Yu, Zhentang
    Jiang, Xijia
    Yin, Jianjian
    Han, Lei
    Xiong, Chengwei
    Huo, Zhennan
    Xu, Jie
    Shang, Jingjing
    Xi, Kun
    Nong, Luming
    Huang, Yong
    Zhou, Xindie
    AGING-US, 2023, 15 (19): : 10196 - 10219
  • [38] Cajanine promotes osteogenic differentiation and proliferation of human bone marrow mesenchymal stem cells
    Zhao, Zi-Yi
    Yang, Lei
    Mu, Xiaohong
    Xu, Lin
    Yu, Xing
    Jiao, Yong
    Zhang, Xiaozhe
    Fu, Lingling
    ADVANCES IN CLINICAL AND EXPERIMENTAL MEDICINE, 2019, 28 (01): : 45 - 50
  • [39] β-ecdysone promotes osteogenic differentiation of bone marrow mesenchymal stem cells
    You, Wei-Li
    Xu, Zheng-Long
    JOURNAL OF GENE MEDICINE, 2020, 22 (09):
  • [40] PURMORPHAMINE INHIBITS BONE MARROW MESENCHYMAL STEM CELLS ADIPOGENIC DIFFERENTIATION AND PROMOTED OSTEOGENIC DIFFERENTIATION VIA HEDGEHOG/WNT/β-CATENIN SIGNAL PATHWAY
    Zhang, L. W.
    Lei, X. H.
    Fu, X. J.
    Zhu, M.
    Chen, J. Q.
    Hong, D.
    OSTEOPOROSIS INTERNATIONAL, 2020, 31 (SUPPL 1) : S528 - S528