Influence of H2O2 and H2O content on anodizing current and morphology evolution of anodic TiO2 nanotubes

被引:10
|
作者
Yang, Peng [1 ]
Liu, Yi [1 ]
Chen, Shiyi [1 ]
Ma, Jing [2 ,3 ]
Gong, Jie [1 ]
Zhang, Tichun [1 ]
Zhu, Xufei [1 ]
机构
[1] Nanjing Univ Sci & Technol, Educ Minist, Key Lab Soft Chem & Funct Mat, Nanjing 210094, Jiangsu, Peoples R China
[2] Shanghai Univ, Sch Environm & Chem Engn, Shanghai 200444, Peoples R China
[3] Shanghai Key Lab Atmospher Particle Pollut & Prev, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
Nanostructures; Microporous materials; Oxides; Thin films; Ionic conductivity; FORMATION MECHANISM; HIGH-PERFORMANCE; ALUMINA; GROWTH; OXIDE; FABRICATION; NANOSTRUCTURE; OXIDATION; CURVES; ALLOYS;
D O I
10.1016/j.materresbull.2016.07.006
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Anodic TiO2 nanotubes (ATNTs) have been investigated extensively. However, the relationship between anodizing curves and the morphologies cannot be explained or quantified by the filed-assisted dissolution theory or plastic flow models. Here, influences of H2O2 and H2O content on anodizing current and morphology of ATNTs were explored and compared in detail. With H2O2 addition, the ginseng-like nanotubes were formed and the anodizing current increased a lot. Based on the oxygen bubble mould, the formation mechanism of the ginseng-like nanotubes has been proposed. Moreover, H2O addition causes an opposite current variation trend to H2O2 addition. The relationships between the morphologies and the anodizing curves were clarified quantitatively by the simulation of the ionic current and electronic current. H2O2 addition accelerates oxygen evolution and therefore electronic current increases with H2O2 content. Moreover, nanotube diameter increases with H2O content mainly due to the dilution of the F- anions and the thicker barrier oxide. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:581 / 589
页数:9
相关论文
共 50 条
  • [21] INFLUENCE OF H2O2 ON PHOTOSYNTHETIC OXYGEN EVOLUTION
    KOMISSAROV, GG
    PTITSYN, GA
    DOKLADY AKADEMII NAUK, 1993, 329 (05) : 661 - 662
  • [22] ELECTROCHEMICAL PRODUCTION OF H2O2 AND O-2 AT AN ANTHRACENE H2O INTERFACE
    POPE, M
    SLOTNICK, K
    JOURNAL OF PHYSICAL CHEMISTRY, 1982, 86 (11): : 1923 - 1924
  • [23] Electron scattering and ionization of H2O; OH, H2O2, HO2 radicals and (H2O)2 dimer
    Joshipura, Kamalnayan N.
    Pandya, Siddharth H.
    Mason, Nigel J.
    EUROPEAN PHYSICAL JOURNAL D, 2017, 71 (04):
  • [24] Electron scattering and ionization of H2O; OH, H2O2, HO2 radicals and (H2O)2 dimer
    Kamalnayan N. Joshipura
    Siddharth H. Pandya
    Nigel J. Mason
    The European Physical Journal D, 2017, 71
  • [25] H2O2 evolution during the photocatalytic degradation of organic molecules on fluorinated TiO2
    Mrowetz, M
    Selli, E
    NEW JOURNAL OF CHEMISTRY, 2006, 30 (01) : 108 - 114
  • [26] Effects of NH4F and H2O on the Geometry of TiO2 Nanotubes
    Gim, Geon-Du
    Jang, Sang-Soon
    Kim, Heesan
    CORROSION SCIENCE AND TECHNOLOGY-KOREA, 2018, 17 (03): : 138 - 145
  • [27] Toxic effect of H2O2 in H2O2/UV, photo-Fenton and heterogeneous photocatalysis (TiO2/H2O2/UV) systems to treat textile wastewater
    Lopez-Lopez, C.
    Purswani, J.
    Martin-Pascual, J.
    Martinez-Toledo, M. V.
    Munio, M. M.
    Poyatos, J. M.
    DESALINATION AND WATER TREATMENT, 2015, 56 (11) : 3044 - 3053
  • [28] Highly sensitive amperometric H2O2 biosensor based on hemoglobin modified TiO2 nanotubes
    Kafi, A. K. M.
    Wu, Guosheng
    Benvenuto, Paul
    Chen, Aicheng
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2011, 662 (01) : 64 - 69
  • [29] Photocatalytic oxidation of ethylene to CO2 and H2O on ultrafine powdered TiO2 photocatalysts in the presence of O2 and H2O
    Park, DR
    Zhang, JL
    Ikeue, K
    Yamashita, H
    Anpo, M
    JOURNAL OF CATALYSIS, 1999, 185 (01) : 114 - 119
  • [30] A Shock Tube Study of OH + H2O2 → H2O + HO2 and H2O2 + M → 2OH+M using Laser Absorption of H2O and OH
    Hong, Zekai
    Cook, Robert D.
    Davidson, David F.
    Hanson, Ronald K.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2010, 114 (18): : 5718 - 5727