Self-organization of a radial microtubule array by dynein-dependent nucleation of microtubules

被引:62
|
作者
Vorobiev, I
Malikov, V
Rodionov, V
机构
[1] Univ Connecticut, Ctr Hlth, Dept Physiol, Farmington, CT 06032 USA
[2] Univ Connecticut, Ctr Hlth, Ctr Biomed Imaging Technol, Farmington, CT 06032 USA
[3] Moscow MV Lomonosov State Univ, AN Belozersky Inst, Lab Cell Motil, Moscow 119899, Russia
关键词
D O I
10.1073/pnas.181354198
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Polarized radial arrays of cytoplasmic microtubules (MTs) with minus ends clustered at the cell center define the organization of the cytoplasm through interaction with microtubule motors bound to membrane organelles or chromosomes. It is generally assumed that the radial organization results from nucleation of MTs at the centrosome. However, radial MT array can also be attained through self-organization that requires the activity of a minus-end-directed MT motor, cytoplasmic dynein. In this study we examine the role of cytoplasmic dynein in the self-organization of a radial MT array in cytoplasmic fragments of fish melanophores lacking the centrosome. After activation of dynein motors bound to membrane-bound organelles, pigment granules, the fragments rapidly form polarized radial arrays of MTs and position pigment aggregates at their centers. We show that rearrangement of MTs in the cytoplasm is achieved through dynein-dependent MT nucleation. The radial pattern is generated by continuous disassembly and reassembly of MTs and concurrent minus-end-directed transport of pigment granules bearing the nucleation sites.
引用
收藏
页码:10160 / 10165
页数:6
相关论文
共 50 条
  • [21] Microtubule- and Dynein-Dependent Nuclear Trafficking of Rhesus Rhadinovirus in Rhesus Fibroblasts
    Zhang, Wei
    Greene, Whitney
    Gao, Shou-Jiang
    JOURNAL OF VIROLOGY, 2012, 86 (01) : 599 - 604
  • [22] Dynein-driven self-organization of microtubules: An entropy- and network-based analysis
    Frolov, Nikita
    Bijnens, Bram
    Ruiz-Reynes, Daniel
    Gelens, Lendert
    CHAOS SOLITONS & FRACTALS, 2024, 184
  • [23] CLASP Modulates Microtubule-Cortex Interaction during Self-Organization of Acentrosomal Microtubules
    Ambrose, J. Christian
    Wasteneys, Geoffrey O.
    MOLECULAR BIOLOGY OF THE CELL, 2008, 19 (11) : 4730 - 4737
  • [24] Self-organization of microtubules with crosslinkers and motors
    Chauhan, Prashali
    Schwarz, Jennifer M.
    Ross, Jennifer L.
    BIOPHYSICAL JOURNAL, 2024, 123 (03) : 190A - 190A
  • [25] Visualization of dynein-dependent microtubule gliding at the cell cortex: implications for spindle positioning
    Gusnowski, Eva M.
    Srayko, Martin
    JOURNAL OF CELL BIOLOGY, 2011, 194 (03): : 377 - 386
  • [26] Microtubules orient the mitotic spindle in yeast through dynein-dependent interactions with the cell cortex
    Carminati, JL
    Stearns, T
    JOURNAL OF CELL BIOLOGY, 1997, 138 (03): : 629 - 641
  • [27] Mechanistic Insight into the Microtubule and Actin Cytoskeleton Coupling through Dynein-Dependent RhoGEF Inhibition
    Meiri, David
    Marshall, Christopher B.
    Greeve, Melissa A.
    Kim, Bryan
    Balan, Marc
    Suarez, Fernando
    Wu, Chuanjin
    LaRose, Jose
    Fine, Noah
    Ikura, Mitsuhiko
    Rottapel, Robert
    MOLECULAR CELL, 2012, 45 (05) : 642 - 655
  • [28] Effects of Confinement on the Self-Organization of Microtubules and Motors
    Pinot, M.
    Chesnel, F.
    Kubiak, J. Z.
    Arnal, I.
    Nedelec, F. J.
    Gueroui, Z.
    CURRENT BIOLOGY, 2009, 19 (11) : 954 - 960
  • [29] Crowder and surface effects on self-organization of microtubules
    Sahu, Sumon
    Herbst, Lena
    Quinn, Ryan
    Ross, Jennifer L.
    PHYSICAL REVIEW E, 2021, 103 (06)
  • [30] The cortical protein Num1p is essential for dynein-dependent interactions of microtubules with the cortex
    Heil-Chapdelaine, RA
    Oberle, JR
    Cooper, JA
    JOURNAL OF CELL BIOLOGY, 2000, 151 (06): : 1337 - 1343