AN EXTENSION OF FURSTENBERG'S THEOREM OF THE INFINITUDE OF PRIMES

被引:3
|
作者
Javier de Vega, F. [1 ]
机构
[1] King Juan Carlos Univ, Madrid, Spain
来源
JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS | 2022年 / 53卷 / 01期
关键词
Furstenberg's proof; arithmetic progression; arithmetic generated by a sequence; polygonal numbers; Peano arithmetic;
D O I
10.17654/0972555522002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The usual product m . n on Z can be viewed as the sum of n terms of an arithmetic progression whose first term is a(l) = m - n + 1 and whose difference is d = 2. Generalizing this idea, we define new similar product mappings, and we consider new arithmetics that enable us to extend Furstenberg's theorem of the infinitude of primes. We also review the classic conjectures in the new arithmetics. Finally, we make important extensions of the main idea. We see that given any integer sequence, the approach generates an arithmetic on integers.
引用
收藏
页码:21 / 43
页数:23
相关论文
共 50 条
  • [21] A Very Short Proof of the Infinitude of Primes
    Mestrovic, Romeo
    AMERICAN MATHEMATICAL MONTHLY, 2017, 124 (06): : 562 - 562
  • [22] A generalization of Furstenberg's diophantine theorem
    Kra, B
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (07) : 1951 - 1956
  • [23] A short and elementary proof of the infinitude of primes
    Scimone, Aldo
    TEACHING MATHEMATICS AND ITS APPLICATIONS, 2008, 27 (04): : 218 - 219
  • [24] A REMARK ON EUCLID PROOF OF THE INFINITUDE OF PRIMES
    COSGRAVE, JB
    AMERICAN MATHEMATICAL MONTHLY, 1989, 96 (04): : 339 - 341
  • [25] PRIMITIVE PYTHAGOREAN TRIPLES AND THE INFINITUDE OF PRIMES
    WEGENER, DP
    FIBONACCI QUARTERLY, 1981, 19 (05): : 449 - 450
  • [26] Rings with few units and the infinitude of primes
    Ozcan, Hikmet Burak
    Taskin, Sedef
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 49 (06): : 2071 - 2073
  • [27] A Pigeon Hole Proof of the Infinitude of Primes
    van der Noort, Vincent
    AMERICAN MATHEMATICAL MONTHLY, 2025,
  • [28] Infinitude of Wilson primes for Fq[t]
    Sauerberg, Jim
    Shu, Linghsueh
    Thakur, Dinesh S.
    Todd, George
    ACTA ARITHMETICA, 2013, 157 (01) : 91 - 100
  • [29] Infinitude of Primes Using Formal Languages
    Thakkar, Aalok
    AMERICAN MATHEMATICAL MONTHLY, 2018, 125 (08): : 745 - 749
  • [30] Notes 98.20 A concrete view of Euclid's proof of the infinitude of primes
    Hardy, Michael
    MATHEMATICAL GAZETTE, 2014, 98 (543): : 479 - 481