Numerical investigations of thermal performance enhancement in phase change energy storage system effective for solar adsorption cooling systems

被引:12
|
作者
Raj, V. Krishna [1 ,2 ]
Baiju, V [1 ]
Junaid, Faras P. [1 ]
机构
[1] TKM Coll Engn, Dept Mech Engn, Energy Res Lab, Kollam, Kerala, India
[2] APJ Abdul Kalam Technol Univ, Thiruvananthapuram, Kerala, India
关键词
PCES; Preference selection index; Tapered fin; Solar adsorption chiller; Numerical studies; Phase change materials; SELECTION; DESIGN; AHP;
D O I
10.1016/j.est.2021.103696
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Solar cooling systems requires an uninterrupted heat input for their continued operation. Thermal energy storage systems using phase change material (PCM) has the ability to deliver heat near isothermally and are effective for solar cooling applications. But these high energy dense storage systems exhibits poor thermal performance due to the low thermal conductivity of PCMs and are bulky. The main objective of this study is to design a phase change energy storage system (PCES) unit with different fin configurations, and to select a proper PCM for solar adsorption cooling systems (SAC). It projects the Preference Selection Index (PSI) method as the effective way to select the PCMs, and the result suggests the commercial PCM SavE-HS89 as a potential candidate among the different materials considered. This study also numerically investigates the thermal performance of different fins shapes, namely, positively tapered, negatively tapered and straight fins; among these the negatively tapered fins are found to be capable of compensating the slow melting process at the bottom region of the storage unit. It has been found that the negatively tapered fin improves the thermal performance of the PCES unit by reducing the melting time by up to 13% and 36% in comparison with the conventional straight fin and positively tapered fin, respectively. A case study of actual plant data of a SAC with different fin shapes shows that the storage system with the desirable configuration can save up to 46% of heat storage cost as compared to PCES without fin.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Phase change energy storage for solar heating systems
    Kaygusuz, K
    ENERGY SOURCES, 2003, 25 (08): : 791 - 807
  • [42] Performance analysis of thermal energy storage systems using phase change material
    Caron-Soupart, Adele
    Fourmigue, Jean-Francois
    Marty, Philippe
    Couturier, Raphael
    APPLIED THERMAL ENGINEERING, 2016, 98 : 1286 - 1296
  • [43] Reduction in Auxiliary Energy Consumption in a Solar Adsorption Cooling System by Utilization of Phase Change Materials
    Poshtiri, Amin Haghighi
    Jafari, Azadeh
    JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2016, 138 (05):
  • [44] The impact of thermal properties on performance of phase change based energy storage systems
    Parhizi, Mohammad
    Jain, Ankur
    APPLIED THERMAL ENGINEERING, 2019, 162
  • [45] Thermal Performance of the Thermal Storage Energy with Phase Change Material
    Balon, Pawel
    Kielbasa, Bartlomiej
    Kowalski, Lukasz
    Smusz, Robert
    ACTA MECHANICA ET AUTOMATICA, 2023, 17 (01) : 76 - 84
  • [46] A review on solar thermal energy storage systems using phase-change materials
    Ram, Satyendra
    Prasad, A. K.
    Hansdah, Dulari
    ENERGY STORAGE, 2024, 6 (01)
  • [47] Performance evaluation of a solar thermal energy storage system using nanoparticle-enhanced phase change material
    Elbahjaoui, Radouane
    El Qarnia, Hamid
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (03) : 2013 - 2028
  • [48] Experimental Study on Thermal Energy Storage Performance of Water Tank with Phase Change Materials in Solar Heating System
    Liang, Fei
    Zhang, Yin
    Liu, Qinjian
    Jin, Zhenghao
    Zhao, Xinhui
    Long, Enshen
    10TH INTERNATIONAL SYMPOSIUM ON HEATING, VENTILATION AND AIR CONDITIONING, ISHVAC2017, 2017, 205 : 3027 - 3034
  • [49] Performance investigation of thermal energy storage system with Phase Change Material (PCM) for solar water heating application
    Mahfuz, M. H.
    Anisur, M. R.
    Kibria, M. A.
    Saidur, R.
    Metselaar, I. H. S. C.
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2014, 57 : 132 - 139
  • [50] Thermal performance of phase change material energy storage floor for active solar water-heating system
    Zeng R.
    Wang X.
    Xiao W.
    Zhang Y.
    Zhang Q.
    Di H.
    Frontiers of Energy and Power Engineering in China, 2010, 4 (2): : 185 - 191