Linear Instability of Breathers for the Focusing Nonlinear Schrodinger Equation

被引:14
|
作者
Haragus, Mariana [1 ]
Pelinovsky, Dmitry E. [2 ]
机构
[1] Univ Bourgogne Franche Comte, FEMTO ST Inst, CNRS, 15b Ave Montboucons, F-25030 Besancon, France
[2] McMaster Univ, Dept Math, Hamilton, ON L8S 4K1, Canada
基金
中国国家自然科学基金;
关键词
Nonlinear Schrodinger equation; Breathers; Linear instability; Darboux transformation; Lax spectrum; Zakharov-Shabat spectral problems; ROGUE WAVES; STABILITY; OPTICS;
D O I
10.1007/s00332-022-09819-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Relying upon tools from the theory of integrable systems, we discuss the linear instability of the Kuznetsov-Ma breathers and the Akhmediev breathers of the focusing nonlinear Schrodinger equation. We use the Darboux transformation to construct simultaneously the breathers and the exact solutions of the Lax system associated with the breathers. We obtain a full description of the Lax spectra for the two breathers, including multiplicities of eigenvalues. Solutions of the linearized NLS equations are then obtained from the eigenfunctions and generalized eigenfunctions of the Lax system. While we do not attempt to prove completeness of eigenfunctions, we aim to determine the entire set of solutions of the linearized NLS equations generated by the Lax system in appropriate function spaces.
引用
收藏
页数:40
相关论文
共 50 条
  • [31] Modulational instability in fractional nonlinear Schrodinger equation
    Zhang, Lifu
    He, Zenghui
    Conti, Claudio
    Wang, Zhiteng
    Hu, Yonghua
    Lei, Dajun
    Li, Ying
    Fan, Dianyuan
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 48 : 531 - 540
  • [32] On instability of excited states of the nonlinear Schrodinger equation
    Cuccagna, Scipio
    PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (01) : 38 - 54
  • [33] On the modulational instability of the nonlinear Schrodinger equation with dissipation
    Rapti, Z.
    Kevrekidis, P. G.
    Frantzeskakis, D. J.
    Malomed, B. A.
    PHYSICA SCRIPTA, 2004, T113 : 74 - 77
  • [34] An instability property of the nonlinear Schrodinger equation on sd
    Burq, N
    Gérard, P
    Tzvetkov, N
    MATHEMATICAL RESEARCH LETTERS, 2002, 9 (2-3) : 323 - 335
  • [35] FOCUSING AND MULTI-FOCUSING SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION
    LEMESURIER, BJ
    PAPANICOLAOU, G
    SULEM, C
    SULEM, PL
    PHYSICA D, 1988, 31 (01): : 78 - 102
  • [36] Modulational instability, nonautonomous breathers and rogue waves for a variable-coefficient derivative nonlinear Schrodinger equation in the inhomogeneous plasmas
    Wang, Lei
    Li, Min
    Qi, Feng-Hua
    Xu, Tao
    PHYSICS OF PLASMAS, 2015, 22 (03)
  • [37] Semiclassical soliton ensembles for the focusing nonlinear Schrodinger equation
    Kamvissis, S
    McLaughlin, KDTR
    Miller, PD
    SEMICLASSICAL SOLUTION ENSEMBLES FOR THE FOCUSING NONLINEAR SCHRODINGER EQUATION, 2003, (154): : 1 - 258
  • [38] Near homoclinic orbits of the focusing nonlinear Schrodinger equation
    Wright, OC
    NONLINEARITY, 1999, 12 (05) : 1277 - 1287
  • [39] On the degenerate soliton solutions of the focusing nonlinear Schrodinger equation
    Li, Sitai
    Biondini, Gino
    Schiebold, Cornelia
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (03)
  • [40] Rogue periodic waves of the focusing nonlinear Schrodinger equation
    Chen, Jinbing
    Pelinovsky, Dmitry E.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 474 (2210):