Orbits of points on certain K3 surfaces

被引:2
|
作者
Baragar, Arthur [1 ]
机构
[1] Univ Nevada, Dept Math Sci, Las Vegas, NV 89154 USA
基金
美国国家科学基金会;
关键词
K3; surface; Orbits; Automorphism; Hausdorff dimension; Ample cone; CANONICAL VECTOR HEIGHTS; PICARD NUMBER ONE; RATIONAL-POINTS; K3-SURFACES; VARIETIES; FIELDS;
D O I
10.1016/j.jnt.2010.09.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we show that, for a K3 surface within a certain class of surfaces and over a number field, the orbit of a point under the group of automorphisms is either finite or its exponent of growth is exactly the Hausdorff dimension of a fractal associated to the ample cone. In particular, the exponent depends on the geometry of the surface and not its arithmetic. For surfaces in this class, the exponent is 0.6527 +/- 0.0012. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:578 / 599
页数:22
相关论文
共 50 条
  • [41] DEGENERATION OF K3 SURFACES
    NISHIGUCHI, K
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1988, 28 (02): : 267 - 300
  • [42] Families of K3 surfaces
    Borcherds, RE
    Katzarkov, L
    Pantev, T
    Shepherd-Barron, NI
    JOURNAL OF ALGEBRAIC GEOMETRY, 1998, 7 (01) : 183 - 193
  • [43] On normal K3 surfaces
    Shimada, Ichiro
    MICHIGAN MATHEMATICAL JOURNAL, 2007, 55 (02) : 395 - 416
  • [44] ON CURVES ON K3 SURFACES
    MARTENS, G
    LECTURE NOTES IN MATHEMATICS, 1989, 1389 : 174 - 182
  • [45] Noncommutative K3 surfaces
    Kim, H
    Lee, CY
    PHYSICS LETTERS B, 2002, 536 (1-2) : 154 - 160
  • [46] On elliptic K3 surfaces
    Shimada, I
    MICHIGAN MATHEMATICAL JOURNAL, 2000, 47 (03) : 423 - 446
  • [47] SUPERSINGULAR K3 SURFACES
    ARTIN, M
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1974, 7 (04): : 543 - 567
  • [48] Large Orbits on Markoff-Type K3 Surfaces over Finite Fields
    O'Dorney, Evan M.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (24) : 21874 - 21879
  • [49] Zariski K3 surfaces
    Katsura, Toshiyuki
    Schuett, Matthias
    REVISTA MATEMATICA IBEROAMERICANA, 2020, 36 (03) : 869 - 894
  • [50] CURVES ON K3 SURFACES
    Chen, Xi
    Gounelas, Frank
    Liedtke, Christian
    DUKE MATHEMATICAL JOURNAL, 2022, 171 (16) : 3283 - 3362