Orbits of points on certain K3 surfaces

被引:2
|
作者
Baragar, Arthur [1 ]
机构
[1] Univ Nevada, Dept Math Sci, Las Vegas, NV 89154 USA
基金
美国国家科学基金会;
关键词
K3; surface; Orbits; Automorphism; Hausdorff dimension; Ample cone; CANONICAL VECTOR HEIGHTS; PICARD NUMBER ONE; RATIONAL-POINTS; K3-SURFACES; VARIETIES; FIELDS;
D O I
10.1016/j.jnt.2010.09.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we show that, for a K3 surface within a certain class of surfaces and over a number field, the orbit of a point under the group of automorphisms is either finite or its exponent of growth is exactly the Hausdorff dimension of a fractal associated to the ample cone. In particular, the exponent depends on the geometry of the surface and not its arithmetic. For surfaces in this class, the exponent is 0.6527 +/- 0.0012. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:578 / 599
页数:22
相关论文
共 50 条