ON ACTION OF LAU ALGEBRAS ON VON NEUMANN ALGEBRAS

被引:1
|
作者
Ramezanpour, Mohammad [1 ]
机构
[1] Damghan Univ, Sch Math & Comp Sci, Damghan 41167, Iran
关键词
Hopf von Neumann algebra; locally compact quantum group; Lau algebra; unitary representation; amenability; COMPACT QUANTUM GROUPS; BANACH-ALGEBRAS; REPRESENTATIONS;
D O I
10.4134/BKMS.2015.52.2.557
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a von Neumann algebraic locally compact quantum group, in the sense of Kustermans and Vaes. In this paper, as a consequence of a notion of amenability for actions of Lau algebras, we show that G, the dual of G, is co-amenable if and only if there is a state m is an element of L-infinity ((G) over cap)* which is invariant under a left module action of L-1(G) on L-infinity ((G) over cap)*. This is the quantum group version of a result by Stokke [17]. We also characterize amenable action of Lau algebras by several properties such as fixed point property. This yields in particular, a fixed point characterization of amenable groups and H-amenable representation of groups.
引用
收藏
页码:557 / 570
页数:14
相关论文
共 50 条
  • [41] Commutator estimates in von Neumann algebras
    Ber, A. F.
    Sukochev, F. A.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2013, 47 (01) : 62 - 63
  • [42] APPROXIMATE EQUIVALENCE IN VON NEUMANN ALGEBRAS
    Li, Qihui
    Hadwin, Don
    Liu, Wenjing
    OPERATORS AND MATRICES, 2023, 17 (01): : 1 - 23
  • [43] Representations of von Neumann Algebras and Ultraproducts
    Haliullin, Samigulla
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2020, 59 (04) : 1010 - 1016
  • [44] STEERING PROJECTIONS IN VON NEUMANN ALGEBRAS
    Wegert, Adam
    OPUSCULA MATHEMATICA, 2015, 35 (02) : 251 - 271
  • [45] Hypercontractivity in group von Neumann algebras
    JUNGE, M. A. R. I. U. S.
    PALAZUELOS, C. A. R. L. O. S.
    PARCET, J. A. V. I. E. R.
    PERRIN, M. A. T. H. I. L. D. E.
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 249 (1183) : VII - +
  • [46] Homology of group von Neumann algebras
    Mattox, Wade
    MUENSTER JOURNAL OF MATHEMATICS, 2016, 9 (01): : 77 - 91
  • [47] INEQUALITIES FOR TRACES ON VON NEUMANN ALGEBRAS
    RUSKAI, MB
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1972, 26 (04) : 280 - &
  • [48] Approximate equivalence in von Neumann algebras
    Huiru Ding
    Don Hadwin
    Science in China Series A: Mathematics, 2005, 48 : 239 - 247
  • [49] Infinite Measures on von Neumann Algebras
    Stanisław Goldstein
    Adam Paszkiewicz
    International Journal of Theoretical Physics, 2015, 54 : 4341 - 4348
  • [50] GLOBAL STRUCTURE IN VON NEUMANN ALGEBRAS
    EFFROS, EG
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 121 (02) : 434 - &