A CNN-Sequence-to-Sequence network with attention for residential short-term load forecasting

被引:26
|
作者
Aouad, Mosbah [1 ]
Hajj, Hazem [1 ]
Shaban, Khaled [2 ]
Jabr, Rabih A. [1 ]
El-Hajj, Wassim [3 ]
机构
[1] Amer Univ Beirut, Dept Elect & Comp Engn, Beirut, Lebanon
[2] Qatar Univ, Dept Comp Sci & Engn, Doha, Qatar
[3] Amer Univ Beirut, Dept Comp Sci, Beirut, Lebanon
关键词
Attention; Convolutional Neural Network; Deep learning; Long short-term memory; Residential load forecasting; NEURAL-NETWORKS; CONSUMPTION;
D O I
10.1016/j.epsr.2022.108152
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Residential short-term load forecasting has become an essential process to develop successful demand response strategies, and help utilities and customers optimize energy production and consumption. Most previous works focused on capturing the spatial and temporal characteristics of residential load data but fell short in accurately comprehending its variations and dynamics. The challenges come from the high non-linearity and volatility of the electric load data, and their complex spatial and temporal characteristics. To address these challenges, we propose a hybrid deep learning approach consisting of a Convolutional Neural Network and an attention-based Sequence-to-Sequence network. The model aims at capturing the spatial and temporal features from time-series data, the irregular load pattern, and the frequent peak consumption values to improve the overall quality of the forecasts. The proposed model is compared to several state-of-the-art approaches, and the performance is validated on the residential load data for a household in Sceaux, France. The results showed an improvement of 9.6% in the mean square error on different prediction time horizons. The proposed approach produced more accurate real-time forecasts and showed better adaptation at peak consumption instances.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Short-Term Residential Load Forecasting With Baseline-Refinement Profiles and Bi-Attention Mechanism
    Xiao, Jiang-Wen
    Liu, Peng
    Fang, Hongliang
    Liu, Xiao-Kang
    Wang, Yan-Wu
    IEEE TRANSACTIONS ON SMART GRID, 2024, 15 (01) : 1052 - 1062
  • [42] STGNet: Short-term residential load forecasting with spatial-temporal gated fusion network
    Feng, Ding
    Li, Dengao
    Zhou, Yu
    Zhao, Jumin
    Zhang, Kenan
    ENERGY SCIENCE & ENGINEERING, 2024, 12 (03) : 541 - 560
  • [43] SHORT-TERM LOAD FORECASTING
    GROSS, G
    GALIANA, FD
    PROCEEDINGS OF THE IEEE, 1987, 75 (12) : 1558 - 1573
  • [44] Segmenting Residential Smart Meter Data for Short-Term Load Forecasting
    Kell, Alexander
    McGough, A. Stephen
    Forshaw, Matthew
    E-ENERGY'18: PROCEEDINGS OF THE 9TH ACM INTERNATIONAL CONFERENCE ON FUTURE ENERGY SYSTEMS, 2018, : 91 - 96
  • [45] Residential Short-Term Load Forecasting during Atypical Consumption Behavior
    Hora, Cristina
    Dan, Florin Ciprian
    Bendea, Gabriel
    Secui, Calin
    ENERGIES, 2022, 15 (01)
  • [46] Residential Short-Term Load Forecasting Using Convolutional Neural Networks
    Voss, Marcus
    Bender-Saebelkampf, Christian
    Albayrak, Sahin
    2018 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CONTROL, AND COMPUTING TECHNOLOGIES FOR SMART GRIDS (SMARTGRIDCOMM), 2018,
  • [47] A Hybrid Short-Term Load Forecasting Approach for Individual Residential Customer
    Lin, Xin
    Zamora, Ramon
    Baguley, Craig A.
    Srivastava, Anurag K.
    IEEE TRANSACTIONS ON POWER DELIVERY, 2023, 38 (01) : 26 - 37
  • [48] A Secure Federated Learning Framework for Residential Short-Term Load Forecasting
    Husnoo, Muhammad Akbar
    Anwar, Adnan
    Hosseinzadeh, Nasser
    Islam, Shama Naz
    Mahmood, Abdun Naser
    Doss, Robin
    IEEE Transactions on Smart Grid, 2024, 15 (02) : 2044 - 2055
  • [49] Short-term Forecasting of Residential Building Load for Distributed Energy Management
    Iwafune, Yumiko
    Yagita, Yoshie
    Ikegami, Takashi
    Ogimoto, Kazuhiko
    2014 IEEE INTERNATIONAL ENERGY CONFERENCE (ENERGYCON 2014), 2014, : 1197 - 1204
  • [50] Short-Term Residential Load Forecasting Based on Resident Behaviour Learning
    Kong, Weicong
    Dong, Zhao Yang
    Hill, David J.
    Luo, Fengji
    Xu, Yan
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2018, 33 (01) : 1087 - 1088