Communication: Diverse nanoscale cluster dynamics: Diffusion of 2D epitaxial clusters

被引:9
|
作者
Lai, King C. [1 ,2 ]
Evans, James W. [1 ,2 ]
Liu, Da-Jiang [2 ]
机构
[1] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA
[2] Iowa State Univ, US DOE, Div Chem & Biol Sci, Ames Lab, Ames, IA 50011 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2017年 / 147卷 / 20期
关键词
METAL; 100; SURFACES; ISLAND DIFFUSION; SHAPE CHANGES; STEP; NANOSTRUCTURES; NANOPARTICLES; NANOCLUSTERS; SIMULATIONS; EVOLUTION; MOBILITY;
D O I
10.1063/1.5008424
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The dynamics of nanoscale clusters can be distinct from macroscale behavior described by continuum formalisms. For diffusion of 2D clusters of N atoms in homoepitaxial systems mediated by edge atom hopping, macroscale theory predicts simple monotonic size scaling of the diffusion coefficient, D-N similar to N-beta, with beta = 3/2. However, modeling for nanoclusters on metal(100) surfaces reveals that slow nucleation-mediated diffusion displaying weak size scaling beta < 1 occurs for "perfect" sizes N-p = L-2 and L(L+1) for integer L = 3,4,... (with unique square or near-square ground state shapes), and also for N-p+3, N-p+4,.... In contrast, fast facile nucleation-free diffusion displaying strong size scaling beta approximate to 2.5 occurs for sizes N-p+1 and N-p+2. D-N versus N oscillates strongly between the slowest branch (for N-p+3) and the fastest branch (for N-p+1). All branches merge for N = O(10(2)), but macroscale behavior is only achieved for much larger N = O(10(3)). This analysis reveals the unprecedented diversity of behavior on the nanoscale. Published by AIP Publishing.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Master-based routing algorithm and communication-based cluster topology for 2D NoC
    Suchi Johari
    Vivek Kumar Sehgal
    The Journal of Supercomputing, 2015, 71 : 4260 - 4286
  • [42] Master-based routing algorithm and communication-based cluster topology for 2D NoC
    Johari, Suchi
    Sehgal, Vivek Kumar
    JOURNAL OF SUPERCOMPUTING, 2015, 71 (11): : 4260 - 4286
  • [43] Epitaxial HfTe2 Dirac semimetal in the 2D limit
    Tsipas, Polychronis
    Pappas, Panagiotis
    Symeonidou, Evgenia
    Fragkos, Sotirios
    Zacharaki, Christina
    Xenogiannopoulou, Evangel Ia
    Siannas, Nikitas
    Dimoulas, Athanasios
    APL MATERIALS, 2021, 9 (10)
  • [44] DIFFUSION ON 2-DIMENSIONAL PERCOLATION CLUSTERS - INFLUENCE OF CLUSTER ANISOTROPY
    MURALIDHAR, R
    JACOBS, DJ
    RAMKRISHNA, D
    NAKANISHI, H
    PHYSICAL REVIEW A, 1991, 43 (12): : 6503 - 6517
  • [45] TERNARY DIFFUSION - RESTRICTIONS ON THE (2D) MATRIX
    CASTLEMAN, LS
    METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1981, 12 (12): : 2031 - 2037
  • [46] Diffusion transitions in a 2D periodic lattice
    Lazarotto, Matheus J.
    Caldas, Ibere L.
    Elskens, Yves
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 112
  • [47] DIFFUSION AND EQUILIBRATION IN 2D FLUID CODES
    RANKIN, R
    BIRNBOIM, A
    MARCHAND, R
    CAPJACK, CE
    COMPUTER PHYSICS COMMUNICATIONS, 1986, 41 (01) : 21 - 34
  • [48] 2D nucleation limited by slow diffusion
    Chvoj, Z.
    Tringides, M. C.
    Chromcova, Z.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2011, 23 (21)
  • [49] Fractional Diffusion to a Cantor Set in 2D
    Iomin, Alexander
    Sandev, Trifce
    FRACTAL AND FRACTIONAL, 2020, 4 (04) : 1 - 12
  • [50] Configuration of 2D finite clusters in plasma sheath
    Zou, X
    Liu, JY
    Zhang, Y
    Wang, ZX
    Gong, Y
    Liu, Y
    Wang, XG
    PLASMA SCIENCE & TECHNOLOGY, 2005, 7 (03) : 2849 - 2850