A parallel least-squares spectral element solver for incompressible flow problems on unstructured grids

被引:1
|
作者
Nool, M
Proot, MMJ
机构
[1] CWI, NL-1090 GB Amsterdam, Netherlands
[2] Delft Univ Technol, Fac Aerosp Engn, NL-2600 GB Delft, Netherlands
关键词
parallelisation; spectral/hp elements method; least-squares method; conjugate gradient; additive Schwarz preconditioning; unstructured grids;
D O I
10.1016/j.parco.2005.03.002
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The parallelisation of the least-squares spectral element formulation of the Stokes problem is discussed for incompressible flow problems on unstructured grids. The method leads to a large symmetric positive definite algebraic system, that is solved iteratively by the conjugate gradient method. To improve the convergence rate, both Jacobi and Additive Schwarz preconditioners are applied. Numerical simulations have been performed to validate the scalability of the different parts of the proposed method. The experiments entailed simulating several large-scale incompressible flows on a Cray T3E and on an SGI Origin 3800. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:414 / 438
页数:25
相关论文
共 50 条
  • [31] A Flow Perspective on Nonlinear Least-Squares Problems
    Bock, Hans Georg
    Gutekunst, Juergen
    Potschka, Andreas
    Garces, Maria Elena Suarez
    VIETNAM JOURNAL OF MATHEMATICS, 2020, 48 (04) : 987 - 1003
  • [32] Least-squares method for Laminar flow problems
    Chattot, JJ
    COMPUTATIONAL FLUID DYNAMICS FOR THE 21ST CENTURY, PROCEEDINGS, 2001, 78 : 250 - 254
  • [33] A Flow Perspective on Nonlinear Least-Squares Problems
    Hans Georg Bock
    Jürgen Gutekunst
    Andreas Potschka
    María Elena Suaréz Garcés
    Vietnam Journal of Mathematics, 2020, 48 : 987 - 1003
  • [34] PARALLEL SOLUTION OF CERTAIN TOEPLITZ LEAST-SQUARES PROBLEMS
    BOJANCZYK, A
    BRENT, RP
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1986, 77 : 43 - 60
  • [35] A unified approach for inviscid compressible and nearly incompressible flow by least-squares finite element method
    Moussaoui, F
    APPLIED NUMERICAL MATHEMATICS, 2003, 44 (1-2) : 183 - 199
  • [36] An adaptive least-squares finite element method for Giesekus viscoelastic flow problems
    Lee, Hsueh-Chen
    Lee, Hyesuk
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2021, 98 (10) : 1974 - 1990
  • [37] LEAST-SQUARES SPECTRAL METHODS FOR ODE EIGENVALUE PROBLEMS
    Hashemi, Behnam
    Nakatsukasa, Yuji
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (05): : A3244 - A3264
  • [38] Space-Time Coupled Least-Squares Spectral Element Methods for Parabolic Problems
    Biswas, Pankaj
    Dutt, Pravir
    Ghorai, S.
    Kumar, N. Kiskore
    INTERNATIONAL JOURNAL FOR COMPUTATIONAL METHODS IN ENGINEERING SCIENCE & MECHANICS, 2019, 20 (05): : 358 - 371
  • [39] A least-squares finite element analysis for diffraction problems
    Bao, G
    Yang, HT
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (02) : 665 - 682
  • [40] Least-squares mixed finite element methods for the incompressible magnetohydrodynamic equations
    Gao, SQ
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2005, 23 (03) : 327 - 336