Mott transition in the one-dimensional SU(n) Hubbard model -: art. no. 205108

被引:17
|
作者
Szirmai, E [1 ]
Sólyom, J [1 ]
机构
[1] Res Inst Solid State Phys & Opt, H-1525 Budapest, Hungary
来源
PHYSICAL REVIEW B | 2005年 / 71卷 / 20期
关键词
D O I
10.1103/PhysRevB.71.205108
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The one-dimensional SU(n) Hubbard model is investigated using an analytical, perturbative renormalization-group treatment in the fermionic formulation of the model for n > 2. It is found that in the half-filled case, the umklapp processes couple the spin and charge degrees of freedom and generate a finite gap for arbitrary finite positive U. This behavior is thus different from that at 1/n filling, where there is one particle per site, in which case the dynamics of the two degrees of freedom can be separated and a critical U-c is needed for the Mott transition.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Bloch oscillations in an aperiodic one-dimensional potential -: art. no. 104303
    de Moura, FABF
    Lyra, ML
    Domínguez-Adame, F
    Malyshev, VA
    PHYSICAL REVIEW B, 2005, 71 (10):
  • [42] Spontaneous emission in one-dimensional photonic crystals -: art. no. 056609
    Sánchez, AS
    Halevi, P
    PHYSICAL REVIEW E, 2005, 72 (05):
  • [43] One-dimensional instability in BaVS3 -: art. no. 196401
    Fagot, S
    Foury-Leylekian, P
    Ravy, S
    Pouget, JP
    Berger, H
    PHYSICAL REVIEW LETTERS, 2003, 90 (19) : 4
  • [44] Magnetism in one-dimensional quantum dot arrays -: art. no. 165324
    Kärkkäinen, K
    Koskinen, M
    Reimann, SM
    Manninen, M
    PHYSICAL REVIEW B, 2005, 72 (16)
  • [45] Mott-Hubbard transition in the N-orbital Hubbard model
    Lundin, U
    Sandalov, I
    Johansson, B
    PHYSICA B, 2000, 281 (281): : 836 - 837
  • [46] Effects of lattice fluctuations on Peierls distortion in a one-dimensional Holstein model -: art. no. 134304
    Lü, ZG
    Wang, Q
    Zheng, H
    PHYSICAL REVIEW B, 2004, 69 (13) : 134304 - 1
  • [47] On integrability of the one-dimensional Hubbard model
    Melikyan, A.
    PHYSICS LETTERS B, 2023, 847
  • [48] Fusion for the one-dimensional Hubbard model
    Beisert, Niklas
    de Leeuw, Marius
    Nag, Panchali
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (32)
  • [49] The one-dimensional Hubbard model: a reminiscence
    Lieb, EH
    Wu, FY
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 321 (1-2) : 1 - 27
  • [50] NOTE ON ONE-DIMENSIONAL HUBBARD MODEL
    CAMP, WJ
    PHYSICAL REVIEW B, 1974, 10 (07) : 2903 - 2906