Unanticipated Polarity Shift in Edge-Contacted Tungsten-Based 2D Transition Metal Dichalcogenide Transistors

被引:11
|
作者
Abuzaid, Hattan [1 ]
Cheng, Zhihui [1 ,2 ,3 ]
Li, Guoqing [4 ]
Cao, Linyou [4 ]
Franklin, Aaron D. [1 ]
机构
[1] Duke Univ, Dept Elect & Comp Engn, Durham, NC USA
[2] NIST, Nanoscale Device Characterizat Div, Gaithersburg, MD USA
[3] Purdue Univ, Dept Elect & Comp Engn, W Lafayette, IN 47907 USA
[4] North Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27606 USA
基金
美国国家科学基金会;
关键词
Metals; Image edge detection; Performance evaluation; Field effect transistors; Substrates; Ion beams; Contacts; Edge contacts; transition metal dichalcogenide (TMD); field-effect transistor (FET); carrier injection; ion beam; MONOLAYER; RESISTANCE;
D O I
10.1109/LED.2021.3106286
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Creating metal edge contacts in transition metal dichalcogenide (TMD) transistors is a promising path to advance transistor miniaturization for future technology nodes. Current experimental demonstrations nearly exclusively focus on MoS2 as the channel material. Here, we create edge-contacted WSe2 and WS2 transistors using a convergent Ar+ ion beam source integrated within an e-beam evaporator chamber for in-situ processing. An unanticipated polarity shift was observed compared to top-contact behavior for Ti-WS2 devices, which displayed p-type conduction. Meanwhile, three distinct metal contact materials yielded comparable p-branch-dominant performance on WSe2. Transmission electron microscope (TEM) imaging with energy dispersive spectroscopy (EDS) analysis indicated the existence of a residual layer of W (and chalcogen atoms to a lesser extent) beneath the metal contacts, even though the substrate was over-etched. The images presented a physically pure edge interface. This intriguing etching effect could carry significant implications for the design of tungsten-based, edge-contacted TMD transistors.
引用
收藏
页码:1563 / 1566
页数:4
相关论文
共 50 条
  • [1] Fermi-level depinning of 2D transition metal dichalcogenide transistors
    Chen, Ruo-Si
    Ding, Guanglong
    Zhou, Ye
    Han, Su-Ting
    JOURNAL OF MATERIALS CHEMISTRY C, 2021, 9 (35) : 11407 - 11427
  • [2] Environmental Analysis with 2D Transition-Metal Dichalcogenide-Based Field-Effect Transistors
    Chen, Xiaoyan
    Liu, Chengbin
    Mao, Shun
    NANO-MICRO LETTERS, 2020, 12 (01)
  • [3] Environmental Analysis with 2D Transition-Metal Dichalcogenide-Based Field-Effect Transistors
    Xiaoyan Chen
    Chengbin Liu
    Shun Mao
    Nano-Micro Letters, 2020, 12
  • [4] Environmental Analysis with 2D Transition-Metal Dichalcogenide-Based Field-Effect Transistors
    Xiaoyan Chen
    Chengbin Liu
    Shun Mao
    Nano-Micro Letters, 2020, 12 (08) : 5 - 28
  • [5] Contact Resistance Parallel Model for Edge-Contacted 2D Material Back-Gate FET
    Cai, Fei
    Deng, Guangsheng
    Li, Xiangxiang
    Lin, Fujiang
    ELECTRONICS, 2020, 9 (12) : 1 - 10
  • [6] Organic, 2D transition metal dichalcogenide interface
    Wee, Andrew
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [7] Band shift of 2D transition-metal dichalcogenide alloys: size and composition effects
    Yipeng Zhao
    Zhe Zhang
    Gang Ouyang
    Applied Physics A, 2018, 124
  • [8] Band shift of 2D transition-metal dichalcogenide alloys: size and composition effects
    Zhao, Yipeng
    Zhang, Zhe
    Ouyang, Gang
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2018, 124 (04):
  • [9] 2D transition metal dichalcogenide nanomaterial-based miRNA biosensors
    Mitrevska, Katerina
    Milosavljevic, Vedran
    Gagic, Milica
    Richtera, Lukas
    Adam, Vojtech
    APPLIED MATERIALS TODAY, 2021, 23
  • [10] Origin of contact polarity at metal-2D transition metal dichalcogenide interfaces
    Noori, Keian
    Xuan, Fengyuan
    Quek, Su Ying
    NPJ 2D MATERIALS AND APPLICATIONS, 2022, 6 (01)