Areal parameter estimates from multiple datasets

被引:3
|
作者
Kennett, B. L. N. [1 ]
机构
[1] Australian Natl Univ, Res Sch Earth Sci, Canberra, ACT 2601, Australia
关键词
spatial interpolation; multiple datasets; data fusion; MOHO;
D O I
10.1098/rspa.2019.0352
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A wide range of methods exist for interpolation between spatially distributed points drawn from a single population. Yet often multiple datasets are available with differing distribution, character and reliability. A simple scheme is introduced to allow the fusion of multiple datasets. Each dataset is assigned an a priori spatial influence zone around each point and a relative weight based on its physical character. The composite result at a specific location is a weighted combination of the spatial terms for all the available data points that make a significant contribution. The combination of multiple datasets is illustrated with the construction of a unified Moho surface in part of southern Australia from results exploiting a variety of different styles of analysis.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Two-parameter areal scaling in the Henon map
    Marcelo Ramirez-Avila, Gonzalo
    Janosi, Imre M.
    Gallas, Jason A. C.
    EPL, 2019, 126 (02)
  • [32] Population Pharmacodynamic Parameter Estimation from Sparse Sampling: Effect of Sigmoidicity on Parameter Estimates
    Pai, Sudhakar M.
    Girgis, Suzette
    Batra, Vijay K.
    Girgis, Ihab G.
    AAPS JOURNAL, 2009, 11 (03): : 535 - 540
  • [33] Population Pharmacodynamic Parameter Estimation from Sparse Sampling: Effect of Sigmoidicity on Parameter Estimates
    Sudhakar M. Pai
    Suzette Girgis
    Vijay K. Batra
    Ihab G. Girgis
    The AAPS Journal, 2009, 11 : 535 - 540
  • [34] The cost of energy efficiency programs: Estimates from utility-reported datasets
    Knight, Patrick
    Biewald, Bruce
    Takahashi, Kenji
    ENERGY, 2022, 239
  • [35] A technique for obtaining representative biokinetic parameter values from replicate sets of parameter estimates
    Magbanua, BS
    Lu, YT
    Grady, CPL
    WATER RESEARCH, 1998, 32 (03) : 849 - 855
  • [36] Perspective on automated predictive kinetics using estimates derived from large datasets
    Green, William H.
    INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, 2024, 56 (11) : 637 - 648
  • [37] Cluster Parameter Determinations for Large Datasets
    Naylor, Tim
    STAR CLUSTERS IN THE ERA OF LARGE SURVEYS: PROCEEDINGS OF SYMPOSIUM 5 OF JENAM 2010, 2012, : 79 - 86
  • [38] From multiple modes for surveys to multiple data sources for estimates
    Citro, Constance F.
    SURVEY METHODOLOGY, 2014, 40 (02) : 137 - 161
  • [39] ESTIMATION OF MULTIDIMENSIONAL PRECIPITATION PARAMETERS BY AREAL ESTIMATES OF OCEANIC RAINFALL
    VALDES, JB
    NAKAMOTO, S
    SHEN, SSP
    NORTH, GR
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1990, 95 (D3) : 2101 - 2111
  • [40] SAMPLING REQUIREMENTS FOR AREAL WATER EQUIVALENT ESTIMATES IN SUBALPINE WATERSHEDS
    LEAF, CF
    KOVNER, J
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1970, 51 (11): : 750 - &