Strict power concavity of a convolution

被引:0
|
作者
O'Hara, Jun [1 ]
Sakata, Shigehiro [2 ]
机构
[1] Chiba Univ, Fac Sci, Dept Math & Informat, 1-33 Yayoi cho, Chiba 2638522, Japan
[2] Fukuoka Univ, Fac Sci, Dept Appl Math, 8-19-1 Nanakuma, Fukuoka 8140180, Japan
关键词
Strict power concavity; The Borell-Brascamp-Lieb inequality; Strict parabolic power concavity; BRUNN-MINKOWSKI; CONVEXITY; INEQUALITIES;
D O I
10.1007/s10231-021-01170-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a sufficient condition for the strict parabolic power concavity of the convolution in space variable of a function defined on R-n x (0, +infinity) and a function defined on R-n. Since the strict parabolic power concavity of a function defined on R-n x (0, +infinity) naturally implies the strict power concavity of a function defined on R-n, our sufficient condition implies the strict power concavity of the convolution of two functions defined on R-n. As applications, we show the strict parabolic power concavity and strict power concavity in space variable of the Gauss-Weierstrass integral and the Poisson integral for the upper half-space.
引用
收藏
页码:1553 / 1575
页数:23
相关论文
共 50 条