Strict power concavity of a convolution

被引:0
|
作者
O'Hara, Jun [1 ]
Sakata, Shigehiro [2 ]
机构
[1] Chiba Univ, Fac Sci, Dept Math & Informat, 1-33 Yayoi cho, Chiba 2638522, Japan
[2] Fukuoka Univ, Fac Sci, Dept Appl Math, 8-19-1 Nanakuma, Fukuoka 8140180, Japan
关键词
Strict power concavity; The Borell-Brascamp-Lieb inequality; Strict parabolic power concavity; BRUNN-MINKOWSKI; CONVEXITY; INEQUALITIES;
D O I
10.1007/s10231-021-01170-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a sufficient condition for the strict parabolic power concavity of the convolution in space variable of a function defined on R-n x (0, +infinity) and a function defined on R-n. Since the strict parabolic power concavity of a function defined on R-n x (0, +infinity) naturally implies the strict power concavity of a function defined on R-n, our sufficient condition implies the strict power concavity of the convolution of two functions defined on R-n. As applications, we show the strict parabolic power concavity and strict power concavity in space variable of the Gauss-Weierstrass integral and the Poisson integral for the upper half-space.
引用
收藏
页码:1553 / 1575
页数:23
相关论文
共 50 条
  • [1] Strict power concavity of a convolution
    Jun O’Hara
    Shigehiro Sakata
    Annali di Matematica Pura ed Applicata (1923 -), 2022, 201 (4): : 1553 - 1575
  • [2] CONCAVITY OF POWERS OF A CONVOLUTION
    HENSLEY, D
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 82 (03) : 503 - 504
  • [3] Strict concavity with homogeneity and decreasing returns to scale
    Ardeshir J. Dalal
    Atlantic Economic Journal, 2000, 28 (3) : 381 - 382
  • [4] PRESERVATION OF LOG-CONCAVITY UNDER CONVOLUTION
    Mao, Tiantian
    Xia, Wanwan
    Hu, Taizhong
    PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2018, 32 (04) : 567 - 579
  • [5] On the strict concavity of the harmonic radius in dimension N ≥ 3
    Cardaliaguet, P
    Tahraoui, R
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2002, 81 (03): : 223 - 240
  • [6] Maximum theorems with strict quasi-concavity and applications
    Kim, WK
    Lee, KH
    Yoon, JH
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (05) : 910 - 923
  • [7] On the strict concavity of the harmonic radius in dimension N ≥ 3
    Cardaliaguet, P
    Tahraoui, R
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (08): : 713 - 718
  • [8] Preserving log-concavity under convolution: Comment
    Miravete, EJ
    ECONOMETRICA, 2002, 70 (03) : 1253 - 1254
  • [9] Strict limit types for monotone convolution
    Wang, Jiun-Chau
    JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (01) : 35 - 58
  • [10] Generalising diagonal strict concavity property for uniqueness of Nash equilibrium
    Eitan Altman
    Manjesh Kumar Hanawal
    Rajesh Sundaresan
    Indian Journal of Pure and Applied Mathematics, 2016, 47 : 213 - 228