Existence and Asymptotic Behavior of Boundary Blow-Up Solutions for Weighted p(x)-Laplacian Equations with Exponential Nonlinearities

被引:0
|
作者
Yin, Li [1 ]
Guo, Yunrui [2 ]
Yang, Jing [1 ]
Lu, Bibo [3 ]
Zhang, Qihu [1 ,4 ]
机构
[1] Zhengzhou Univ Light Ind, Dept Math & Informat Sci, Zhengzhou 450002, Henan, Peoples R China
[2] Henan Inst Sci & Technol, Dept Math, Xinxiang 453003, Henan, Peoples R China
[3] Henan Polytech Univ, Sch Comp Sci & Technol, Jiaozuo 454000, Henan, Peoples R China
[4] Huazhong Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China
基金
美国国家科学基金会; 中国博士后科学基金;
关键词
ELLIPTIC-EQUATIONS; VARIABLE EXPONENT; REGULARITY; FUNCTIONALS;
D O I
10.1155/2010/971268
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the following p(x)-Laplacian equations with exponential nonlinearities: -Delta(p(x))u + rho(x)e(integral(x,u)) = 0 in Omega, u(x) -> +infinity as d(x, partial derivative Omega) -> 0, where -Delta(p(x))u = -div(vertical bar del u vertical bar(p(x)) (2)del u) is called p(x)-Laplacian, rho(x) is an element of C(Omega). The asymptotic behavior of boundary blow-up solutions is discussed, and the existence of boundary blow-up solutions is given.
引用
收藏
页数:20
相关论文
共 50 条