Techno-economic analysis and energy performance of a geothermal earth-to-air heat exchanger (EAHE) system in residential buildings: A case study

被引:20
|
作者
Mostafaeipour, Ali [1 ]
Goudarzi, Hossein [2 ]
Khanmohammadi, Mohammadali [3 ]
Jahangiri, Mehdi [4 ]
Sedaghat, Ahmad [5 ]
Norouzianpour, Hirbod [2 ]
Chowdhury, Shahariar [6 ,7 ]
Techato, Kuaanan [6 ,7 ]
Issakhov, Alibek [8 ,9 ]
Almutairi, Khalid [10 ]
Dehshiri, Seyyed Jalaladdin Hosseini [11 ]
机构
[1] Yazd Univ, Ind Engn Dept, Yazd, Iran
[2] Univ New Mexico, Sch Architecture & Planning, Albuquerque, NM 87131 USA
[3] Iran Univ Sci & Technol, Sch Architecture & Environm Design, Tehran, Iran
[4] Islamic Azad Univ, Dept Mech Engn, Shahrekord Branch, Shahrekord, Iran
[5] Australian Coll Kuwait, Sch Engn, Dept Mech Engn, Kuwait, Kuwait
[6] Prince Songkla Univ, Fac Environm Management, Hat Yai 90112, Songkhla, Thailand
[7] Prince Songkla Univ, Fac Environm Management, Environm Assessment & Technol Hazardous Waste Man, Hat Yai, Thailand
[8] Al Farabi Kazakh Natl Univ, Fac Mech & Math, Dept Math & Comp Modelling, Alma Ata, Kazakhstan
[9] Kazakh British Tech Univ, Dept Math & Cybernet, Alma Ata, Kazakhstan
[10] Univ Hafr Al Batin, Community Coll, Mech Engn Technol, Hafar al Batin, Saudi Arabia
[11] Allameh Tabatabai Univ, Fac Management & Accounting, Dept Ind Management, Tehran, Iran
关键词
cooling building; earth-to-air heat exchanger; economic evaluation; geothermal; hot and dry climate; sustainable design; ECONOMIC-EVALUATION; COOLING CAPACITY; MODEL; HOT; VENTILATION;
D O I
10.1002/ese3.952
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Natural air ventilation in the hot-dry regions plays a key role to decrease indoor air temperature in hot season, also to improve thermal comfort during the cold season. One of the most common ways to take advantage of natural ventilation is using wind catcher with an underground tunnel. In this method, the tower catches the airflow and directs it to the underground tunnel to decrease the air temperature by transferring heat to the ground, which is cooler in the summer and warmer in the winter. Earth-to-air heat exchanger (EAHE) is a modern form of wind catcher with underground tunnel. In this method, air after passing through buried pipes exchanges heat with the ground, and its temperature increases in the winter and decreases during the summer. This study analyzes the energy performance and cost-effectiveness of earth-to-air heat exchanger to be utilized in a residential building in climate condition of the province of Kermanin Iran. In this regard, 9 different configurations of the EAHE are investigated to find the optimized EAHE. The system performance and cost-effectiveness are studied in 3 different depths including 1, 2, and 3 m with 3 different pipe lengths including 25, 50, and 75 m. The results show that the EAHE is capable of reducing the inlet air temperature by 0.5-9.9celcius in the summer and increasing it by 0.9-11.2celcius in the winter. Furthermore, by integrating the EAHEs in a building design, one can reduce the total annual cooling load by 1.25%-3.97% and for heating by 1.34%-3.96%. The payback period of the system with a pipe length of 25 m is 16 years, but for the systems with pipe lengths of 50 and 75 m, this period reduces to almost 3 years.
引用
收藏
页码:1807 / 1825
页数:19
相关论文
共 50 条
  • [31] Study of the energy performance of an earth-Air heat exchanger for refreshing buildings in Algeria
    Menhoudj, Sayeh
    Mokhtari, Abderrahmane-Mejedoub
    Benzaama, Mohamed-Hichem
    Maalouf, Chadi
    Lachi, Mohamed
    Makhlouf, Mohammed
    ENERGY AND BUILDINGS, 2018, 158 : 1602 - 1612
  • [32] Experimental and numerical research on the thermal performance of a vertical earth-to-air heat exchanger system
    Huang, Kailiang
    Sun, Qihai
    Feng, Guohui
    Zhang, Lei
    Li, Ainong
    Wei, Jiaxing
    Zhang, Xiao
    Meng, Xianghua
    GEOTHERMICS, 2025, 125
  • [33] Performance analysis of an earth-to-air heat exchanger assisted by a wind tower for passive cooling of buildings in arid and hot climate
    Benhammou, M.
    Draoui, B.
    Zerrouki, M.
    Marif, Y.
    ENERGY CONVERSION AND MANAGEMENT, 2015, 91 : 1 - 11
  • [34] Performance analysis of clean energy using geothermal earth to air heat exchanger (GEAHE) in Lower Himalayan Region - Case study scenario
    Kaushal, Maneesh
    ENERGY AND BUILDINGS, 2021, 248
  • [35] Experimental and numerical study on cooling performance of a novel earth-to-air heat exchanger system with an inlet plenum chamber
    Yang, Qizhi
    Hu, Zhiru
    Tao, Yao
    Shi, Long
    Tu, Jiyuan
    Chai, Jie
    Wang, Yong
    ENERGY CONVERSION AND MANAGEMENT, 2023, 277
  • [36] Research on the spatial distribution of the coupled solar chimney with earth-to-air heat exchanger system performance
    Zhang, Pengju
    Cao, Dun
    Hao, Zhanguo
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2025, 60
  • [37] Energy autonomy in residential buildings: A techno-economic model-based analysis of the scale effects
    McKenna, Russell
    Merkel, Erik
    Fichtner, Wolf
    APPLIED ENERGY, 2017, 189 : 800 - 815
  • [38] Electrification of residential and commercial buildings integrated with hybrid renewable energy systems: A techno-economic analysis
    Khosravani, Ali
    DeHaan, Matthew
    Billings, Blake W.
    Powell, Kody M.
    ENERGY, 2024, 302
  • [39] THERMAL PERFORMANCE OF EARTH-AIR HEAT EXCHANGER SYSTEMS FOR COOLING APPLICATIONS IN RESIDENTIAL BUILDINGS
    Ghaith, Fadi A.
    Razzaq, Habib Ur
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2018, VOL 6A, 2019,
  • [40] TECHNO-ECONOMIC ANALYSIS OF A GRID-CONNECTED RESIDENTIAL PHOTOVOLTAIC SYSTEM: A ROMANIAN CASE STUDY
    Cristea, Ciprian
    Cristea, Maria
    Birou, Iulian
    Pica, Constantin-Sorin
    Tirnovan, Radu-Adrian
    Serban, Florica Mioara
    Stoenoiu, Carmen-Elena
    ACTA TECHNICA NAPOCENSIS SERIES-APPLIED MATHEMATICS MECHANICS AND ENGINEERING, 2019, 62 (04): : 543 - 550