Shape-Supervised Super-Resolution Convolutional Neural Network for Melt Droplet Images

被引:0
|
作者
Liu, Xiaoke [1 ,2 ]
Lu, Xiaoxiao [1 ,2 ]
Wang, Xiaoqing [1 ]
Yu, Qiang [1 ]
Liu, Laijun [3 ]
Wang, Yuehai [4 ]
Ning, Keqing [5 ]
机构
[1] Chinese Acad Sci, Natl Space Sci Ctr, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 100049, Peoples R China
[3] Guilin Univ Technol, Coll Mat Sci & Engn, Guilin 541004, Peoples R China
[4] North China Univ Technol, Sch Informat, Beijing 100043, Peoples R China
[5] Beijing Jiaotong Univ, Sch Sci, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
Melt droplet thermophysical properties; Image super-resolution; Shape supervised; Contour extraction; THERMOPHYSICAL PROPERTY MEASUREMENTS; METALS;
D O I
10.1007/s12217-021-09890-8
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The containerless method is generally used to study the intrinsic properties of materials, especially the thermophysical properties of melt droplets. The calculation of the melt droplet density and thermal expansion coefficient is related to its volume, while density is the dependent variable for determining the surface tension and viscosity coefficient. Evidently, the accuracy of the thermophysical properties of materials essentially depend on the precision of volume measurement. The melt droplet volume is obtained by analysing the image, thus, the precise volume of the melt droplet depends on the image quality and contour extraction algorithm. Restricted by external conditions, most of the obtained melt droplet images are of low quality and are severely polluted by noise, which complicates the determination of the thermophysical characteristics. Herein, a shape-supervised super-resolution convolutional neural network method is presented to improve image resolution and using its sub-network to extract the contour of the melt droplet directly and accurately. Compared with the existing method, this approach improves the accuracy of evaluating the thermophysical properties of the material and reduces the computational complexity by simplifying the two-step calculation process to a one-step procedure.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Super-Resolution Image Restoration Using Convolutional Neural Network
    Yu, Nedzelskyi O.
    Lashchevska, N. O.
    VISNYK NTUU KPI SERIIA-RADIOTEKHNIKA RADIOAPARATOBUDUVANNIA, 2023, (91): : 79 - 86
  • [22] HYPERSPECTRAL IMAGE SUPER-RESOLUTION VIA CONVOLUTIONAL NEURAL NETWORK
    Mei, Shaohui
    Yuan, Xin
    Ji, Jingyu
    Wan, Shuai
    Hou, Junhui
    Du, Qian
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 4297 - 4301
  • [23] Convolutional Neural Network with Gradient Information for Image Super-Resolution
    Tang, Yinggan
    Zhu, Xiaoning
    Cui, Mingyong
    2016 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (ICIA), 2016, : 1714 - 1719
  • [24] A Dual-Scale Convolutional Neural Network for Super-Resolution
    Liu, Jing
    He, Shuai
    Xue, Yuxin
    Zhang, Xiaoyan
    THIRTEENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2021), 2021, 11878
  • [25] HYPERSPECTRAL SUPER-RESOLUTION BY UNSUPERVISED CONVOLUTIONAL NEURAL NETWORK AND SURE
    Nguyen, Han V.
    Ulfarsson, Magnus O.
    Sveinsson, Johannes R.
    Mura, Mauro Dalla
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 903 - 906
  • [26] A Deep Convolutional Neural Network with Selection Units for Super-Resolution
    Choi, Jae-Seok
    Kim, Munchurl
    2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, : 1150 - 1156
  • [27] Image super-resolution using a dilated convolutional neural network
    Lin, Guimin
    Wu, Qingxiang
    Qiu, Lida
    Huang, Xixian
    NEUROCOMPUTING, 2018, 275 : 1219 - 1230
  • [28] ITERATIVE CONVOLUTIONAL NEURAL NETWORK FOR NOISY IMAGE SUPER-RESOLUTION
    Bao, Wenbo
    Zhang, Xiaoyun
    Yan, Shangpeng
    Gao, Zhiyong
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 4038 - 4042
  • [29] Image super-resolution with an enhanced group convolutional neural network
    Tian, Chunwei
    Yuan, Yixuan
    Zhang, Shichao
    Lin, Chia-Wen
    Zuo, Wangmeng
    Zhang, David
    NEURAL NETWORKS, 2022, 153 : 373 - 385
  • [30] Image Super-Resolution Using Residual Convolutional Neural Network
    Lee, Pei-Ying
    Tseng, Chien-Cheng
    2019 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - TAIWAN (ICCE-TW), 2019,