Non-collision periodic solutions of prescribed energy problem for a class of singular Hamiltonian systems

被引:11
|
作者
Adachi, S [1 ]
机构
[1] Shizuoka Univ, Fac Engn, Div Appl Sci, Shizuoka 4328561, Japan
关键词
singular Hamiltonian system; periodic solution; minimax theory;
D O I
10.12775/TMNA.2005.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the existence of non-collision periodic solutions with prescribed energy for the following singular Hamiltonian systems: {(q) double overdot +del V(q)=0 {1/2 vertical bar(q) over dot vertical bar(2) + V(q)=H In particular for the potential V(q) similar to -1/dist (q, D)(alpha), where the singular set D is a non-empty compact subset of R-N, we prove the existence of a non-collision periodic solution for all H > 0 and alpha is an element of (0,2).
引用
收藏
页码:275 / 296
页数:22
相关论文
共 50 条