Multi-source knowledge integration based on machine learning algorithms for domain ontology

被引:14
|
作者
Wang, Ting [1 ]
Gu, Hanzhe [1 ]
Wu, Zhuang [1 ,2 ]
Gao, Jing [1 ]
机构
[1] Capital Univ Econ & Business, Informat Sch, Beijing 100070, Peoples R China
[2] Capital Univ Econ & Business, Informat Sch, CTSC Ctr, Beijing 100070, Peoples R China
来源
NEURAL COMPUTING & APPLICATIONS | 2020年 / 32卷 / 01期
关键词
Domain ontology; Thesaurus; Online encyclopedia; Similarity computing; EXTRACTION;
D O I
10.1007/s00521-018-3806-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a new approach of automatic building for domain ontology based on machine learning algorithm is proposed, and by which the large-scale e-Gov ontology is built automatically. The advent of the knowledge graph era puts forward higher requirements for semantic search and analysis. Since traditional manual ontology construction requires the participation of domain experts in large-scale ontology construction, which will take time and considerable resources, and the ontology scale is also limited. The approach proposed in this paper not only makes up for the shortage of thesaurus description of the semantic relation between terms, but also takes advantage of the massive online encyclopedia knowledge and typical similarity algorithm in machine learning to fill the domain ontology automatically, so that the advantages of the two different knowledge sources are fully utilized and the system as a whole is gained. Ultimately, this may provide the foundation and support for the construction of knowledge graph and the semantic-oriented applications.
引用
收藏
页码:235 / 245
页数:11
相关论文
共 50 条
  • [31] FEDERATED DATASET DICTIONARY LEARNING FOR MULTI-SOURCE DOMAIN ADAPTATION
    Espinoza Castellon, Fabiola
    Montesuma, Eduardo Fernandes
    Mboula, Fred Ngole
    Mayoue, Aurelien
    Souloumiac, Antoine
    Gouy-Pailler, Cedric
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 5610 - 5614
  • [32] Taming the Domain Shift in Multi-source Learning for Energy Disaggregation
    Chang, Xiaomin
    Li, Wei
    Shi, Yunchuan
    Zomaya, Albert Y.
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 3805 - 3816
  • [33] Attention-Based Multi-Source Domain Adaptation
    Zuo, Yukun
    Yao, Hantao
    Xu, Changsheng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 3793 - 3803
  • [34] Multi-source based approach for Visual Domain Adaptation
    Tiwari, Mrinalini
    Sanodiya, Rakesh Kumar
    Mathew, Jimson
    Saha, Sriparna
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [35] Digital Mapping and Scenario Prediction of Soil Salinity in Coastal Lands Based on Multi-Source Data Combined with Machine Learning Algorithms
    Zhou, Mengge
    Li, Yonghua
    REMOTE SENSING, 2024, 16 (14)
  • [36] Mutual Learning of Joint and Separate Domain Alignments for Multi-Source Domain Adaptation
    Xu, Yuanyuan
    Kan, Meina
    Shan, Shiguang
    Chen, Xilin
    2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 1658 - 1667
  • [37] Research on Wearable Emotion Recognition Based on Multi-Source Domain Adversarial Transfer Learning
    Zou Y.-P.
    Wang D.-Y.
    Wang D.
    Zheng C.-L.
    Song Q.-F.
    Zhu Y.-Z.
    Fan C.-H.
    Wu K.-S.
    Jisuanji Xuebao/Chinese Journal of Computers, 2024, 47 (02): : 266 - 286
  • [38] Multi-Source Transfer Learning for EEG Classification Based on Domain Adversarial Neural Network
    Liu, Dezheng
    Zhang, Jia
    Wu, Hanrui
    Liu, Siwei
    Long, Jinyi
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2023, 31 : 218 - 228
  • [39] Improving Winter Wheat Yield Forecasting Based on Multi-Source Data and Machine Learning
    Sun, Yuexia
    Zhang, Shuai
    Tao, Fulu
    Aboelenein, Rashad
    Amer, Alia
    AGRICULTURE-BASEL, 2022, 12 (05):
  • [40] The Construction and Migration of a Multi-source Integrated Drought Index Based on Different Machine Learning
    Yue, Hui
    Yu, Xiangyu
    Liu, Ying
    Wang, Xu
    WATER RESOURCES MANAGEMENT, 2023, 37 (15) : 5989 - 6004