Recognition of JS']JSL fingerspelling using Deep Convolutional Neural Networks

被引:7
|
作者
Kwolek, Bogdan [1 ]
Baczynski, Wojciech [1 ]
Sako, Shinji [2 ]
机构
[1] AGH Univ Sci & Technol, Dept Comp Sci, 30 Mickiewicza Av,Bldg D-17, PL-30059 Krakow, Poland
[2] Nagoya Inst Technol, Nagoya, Aichi, Japan
关键词
Fingerspelling recognition; Generative Adversarial Networks; Semantic segmentation; U-Net; Residual networks (ResNets); HAND GESTURE RECOGNITION; POSTURE;
D O I
10.1016/j.neucom.2021.03.133
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present approach for recognition of static fingerspelling in Japanese Sign Language on RGB images. Two 3D articulated hand models have been developed to generate synthetic fingerspellings and to extend a dataset consisting of real hand gestures.In the first approach, advanced graphics techniques were employed to rasterize photorealistic gestures using a skinned hand model. In the second approach, gestures rendered using simpler lighting techniques were post-processed by a modified Generative Adversarial Network. In order to avoid generation of unrealistic fingerspellings a hand segmentation term has been added to the loss function of the GAN. The segmentation of the hand in images with complex background was done by proposed ResNet34-based segmentation network. The finger spelled signs were recognized by an ensemble with both fine-tuned and trained from scratch neural networks. Experimental results demonstrate that owing to sufficient amount of training data a high recognition rate can be attained on RGB images. The JSL dataset with pixel-level hand segmentations is available for download. CO 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:586 / 598
页数:13
相关论文
共 50 条
  • [31] Deep Convolutional Neural Networks for Unconstrained Ear Recognition
    Alshazly, Hammam
    Linse, Christoph
    Barth, Erhardt
    Martinetz, Thomas
    IEEE ACCESS, 2020, 8 (08): : 170295 - 170310
  • [32] Speech emotion recognition with deep convolutional neural networks
    Issa, Dias
    Demirci, M. Fatih
    Yazici, Adnan
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2020, 59
  • [33] Gait Recognition using FMCW Radar and Temporal Convolutional Deep Neural Networks
    Addabbo, Pia
    Bernardi, Mario Luca
    Biondi, Filippo
    Cimitile, Marta
    Clemente, Carmine
    Orlando, Danilo
    2020 IEEE 7TH INTERNATIONAL WORKSHOP ON METROLOGY FOR AEROSPACE (METROAEROSPACE), 2020, : 171 - 175
  • [34] Action Recognition From Depth Maps Using Deep Convolutional Neural Networks
    Wang, Pichao
    Li, Wanqing
    Gao, Zhimin
    Zhang, Jing
    Tang, Chang
    Ogunbona, Philip O.
    IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, 2016, 46 (04) : 498 - 509
  • [35] Human Activity Recognition using Wearable Sensors by Deep Convolutional Neural Networks
    Jiang, Wenchao
    Yin, Zhaozheng
    MM'15: PROCEEDINGS OF THE 2015 ACM MULTIMEDIA CONFERENCE, 2015, : 1307 - 1310
  • [36] RGB-D Object Recognition Using Deep Convolutional Neural Networks
    Zia, Saman
    Yuksel, Buket
    Yuret, Deniz
    Yemez, Yucel
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, : 887 - 894
  • [37] Ligature Recognition in Urdu Caption Text using Deep Convolutional Neural Networks
    Hayat, Umar
    Aatif, Muhammad
    Zeeshan, Osama
    Siddiqi, Imran
    2018 14TH INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES (ICET), 2018,
  • [38] Recognition of prokaryotic and eukaryotic promoters using convolutional deep learning neural networks
    Umarov, Ramzan Kh.
    Solovyev, Victor V.
    PLOS ONE, 2017, 12 (02):
  • [39] Recognition of asphalt pavement crack length using deep convolutional neural networks
    Tong, Zheng
    Gao, Jie
    Han, Zhenqiang
    Wang, Zhenjun
    ROAD MATERIALS AND PAVEMENT DESIGN, 2018, 19 (06) : 1334 - 1349
  • [40] Data Driven Sensing for Action Recognition Using Deep Convolutional Neural Networks
    Gupta, Ronak
    Anand, Prashant
    Kaushik, Vinay
    Chaudhury, Santanu
    Lall, Brejesh
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2019, PT I, 2019, 11941 : 250 - 259