In vitro circulation model driven by tissue-engineered dome-shaped cardiac tissue

被引:3
|
作者
Kikuchi, Tetsutaro [1 ]
Matsuura, Katsuhisa [1 ]
Shimizu, Tatsuya [1 ]
机构
[1] Tokyo Womens Med Univ TWIns, Inst Adv Biomed Engn & Sci, Shinjuku Ku, 8-1 Kawada Cho, Tokyo 1628666, Japan
关键词
cell sheet technology; induced pluripotent stem cell; cardiomyocyte; tissue engineering; organ on a chip; drug screening; CELL-DERIVED CARDIOMYOCYTES; RISK-ASSESSMENT; CONSTRUCTION; FABRICATION; MATURATION; PLATFORM; COLLAGEN;
D O I
10.1088/1758-5090/ac77c1
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The heart is an essential organ for animals and humans. With the increased availability of pluripotent stem cells, the use of three-dimensional cardiac tissues consisting of cultured cardiomyocytes in in vitro drug evaluation has been widely studied. Several models have been proposed for the realization of the pump function, which is the original function of the heart. However, there are no models that simulate the human circulatory system using cultured cardiac tissue. This study shows that a dome-shaped cardiac tissue fabricated using the cell sheet stacking technique can achieve a heart-like pump function and circulate culture medium, there by mimicking the human circulatory system. Firstly, human induced pluripotent stem cells were differentiated into autonomously beating cardiomyocytes, and cardiomyocyte cell sheets were created using temperature-responsive culture dishes. A cardiomyocyte sheet and a human dermal fibroblast sheet were stacked using a cell sheet manipulator. This two-layered cell sheet was then inflated to create a dome-shaped cardiac tissue with a base diameter of 8 mm. The volume of the dome-shaped cardiac tissue changed according to the autonomous beating. The stroke volume increased with the culture period and reached 21 +/- 8.9 mu l (n = 6) on day 21. It also responded to beta-stimulant and extracellular calcium concentrations. Internal pressure fluctuations were also recorded under isovolumetric conditions by dedicated culture devices. The peak heights of pulsatile pressure were 0.33 +/- 0.048 mmHg (n = 3) under a basal pressure of 0.5 mmHg on day 19. When the tissue was connected to a flow path that had check valves applied, it drove a directional flow with an average flow rate of approximately 1 mu l s(-1). Furthermore, pressure-volume (P-V) diagrams were created from the simultaneous measurement of changes in pressure and volume under three conditions of fluidic resistance. In conclusion, this cardiac model can potentially be used for biological pumps that drive multi-organ chips and for more accurate in vitro drug evaluation using P-V diagrams.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] The Effect of IGF-I on Anatomically Shaped Tissue-Engineered Menisci
    Puetzer, Jennifer L.
    Brown, Bryan N.
    Ballyns, Jeffrey J.
    Bonassar, Lawrence J.
    TISSUE ENGINEERING PART A, 2013, 19 (11-12) : 1443 - 1450
  • [42] Cell-based cardiac pumps and tissue-engineered ventricles
    Khait, L.
    Birla, Ravi K.
    REGENERATIVE MEDICINE, 2007, 2 (04) : 391 - 406
  • [43] Structure, Detect and Evaluate a Tissue-Engineered 3D Cardiac Model Based on Decellularized Heart Scaffold In Vitro
    Lu, Yingjin
    Hou, Liang
    Liu, Wei
    Zhang, Xiuzhen
    Xu, Hong
    Ding, Yanchun
    Wang, Xiuli
    Wei, Guofeng
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2015, 66 (16) : C1 - C2
  • [44] Tissue-engineered bone regeneration
    Petite, H
    M S-MEDECINE SCIENCES, 2001, 17 (01): : 128 - 130
  • [45] Osteoclastogenesis on tissue-engineered bone
    Nakagawa, K
    Abukawa, H
    Shin, MY
    Terai, H
    Troulis, MJ
    Vacanti, JP
    TISSUE ENGINEERING, 2004, 10 (1-2): : 93 - 100
  • [46] Tissue-Engineered Urinary Conduits
    Kates, Max
    Singh, Anirudha
    Matsui, Hotaka
    Steinberg, Gary D.
    Smith, Norm D.
    Schoenberg, Mark P.
    Bivalacqua, Trinity J.
    CURRENT UROLOGY REPORTS, 2015, 16 (03)
  • [47] Tissue-engineered Artificial Urothelium
    Koji Kawai
    Kazunori Hattori
    Hideyuki Akaza
    World Journal of Surgery, 2000, 24 : 1160 - 1162
  • [48] Tissue-engineered trachea: A review
    Law, Jia Xian
    Liau, Ling Ling
    Aminuddin, Bin Saim
    Ruszymah, Bt Hj Idrus
    INTERNATIONAL JOURNAL OF PEDIATRIC OTORHINOLARYNGOLOGY, 2016, 91 : 55 - 63
  • [49] Tissue-engineered spinal cord
    Vacanti, MP
    Leonard, JL
    Dore, B
    Bonassar, LJ
    Cao, Y
    Stachelek, SJ
    Vacanti, JP
    O'Connell, F
    Yu, CS
    Farwell, AP
    Vacanti, CA
    TRANSPLANTATION PROCEEDINGS, 2001, 33 (1-2) : 592 - 598
  • [50] Tissue-engineered artificial urothelium
    Kawai, K
    Hattori, K
    Akaza, H
    WORLD JOURNAL OF SURGERY, 2000, 24 (10) : 1160 - 1162