Optimizing Heterogeneous Task Allocation for Edge Compute Micro Clusters Using PSO Metaheuristic

被引:0
|
作者
Alhaizaey, Yousef [1 ]
Singer, Jeremy [1 ]
Michala, Anna Lito [1 ]
机构
[1] Univ Glasgow, Sch Comp Sci, Glasgow, Lanark, Scotland
关键词
Edge Micro-Clusters; Edge Systems; Edge Computing; Task Allocation; Resource Management; PSO; Optimisation;
D O I
10.1109/FMEC57183.2022.10062755
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Optimised task allocation is essential for efficient and effective edge computing; however, task allocation differs in edge systems compared to the powerful centralised cloud data centres, given the limited resource capacities in edge and the strict QoS requirements of many innovative Internet of Things (IoT) applications. This paper aims to optimise heterogeneous task allocation specifically for edge micro-cluster platforms. We extend our previous work on optimising task allocation for micro-clusters by presenting a linear-based model and propose a metaheuristic Particle Swarm Optimisation (PSO) technique to minimise the makespan time and the allocation overhead time of heterogeneous workloads in batch execution. We present a comparative performance evaluation of metaheuristic PSO, mixed-integer programming (MIP) and randomised allocation based on the computation overhead time and the quality of the solutions. Our results show a crossover implying that mixedinteger programming is efficient for small-scale clusters, whereas PSO scales better and provides near-optimal solutions for largerscale micro-clusters.
引用
收藏
页码:33 / 40
页数:8
相关论文
共 50 条
  • [41] A Multi-Objective Approach for Optimizing Edge-Based Resource Allocation Using TOPSIS
    Mohamed, Habiba
    Al-Masri, Eyhab
    Kotevska, Olivera
    Souri, Alireza
    ELECTRONICS, 2022, 11 (18)
  • [42] HetMEC: Latency-Optimal Task Assignment and Resource Allocation for Heterogeneous Multi-Layer Mobile Edge Computing
    Wang, Pengfei
    Zheng, Zijie
    Di, Boya
    Song, Lingyang
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2019, 18 (10) : 4942 - 4956
  • [43] Task Allocation Optimization Scheme Based on Queuing Theory for Mobile Edge Computing in 5G Heterogeneous Networks
    Xue, Jianbin
    Wang, Zesen
    Zhang, Yonggang
    Wang, Lu
    MOBILE INFORMATION SYSTEMS, 2020, 2020
  • [44] Complexity Analysis of New Task Allocation Problem Using Network Flow Method on Multicore Clusters
    Yang, Jixiang
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [45] Moving Compute towards Data in Heterogeneous multi-FPGA Clusters using Partial Reconfiguration and I/O Virtualisation
    Pham, Khoa
    Koch, Dirk
    Vaishnav, Anuj
    Georgopoulos, Konstantinos
    Malakonakis, Pavlos
    Ioannou, Aggelos
    Mavroidis, Iakovos
    2020 INTERNATIONAL CONFERENCE ON FIELD-PROGRAMMABLE TECHNOLOGY (ICFPT 2020), 2020, : 221 - 226
  • [46] Task Offloading and Resource Allocation in IoT Based Mobile Edge Computing Using Deep Learning
    Abdullaev, Ilyos
    Prodanova, Natalia
    Bhaskar, K. Aruna
    Lydia, E. Laxmi
    Kadry, Seifedine
    Kim, Jungeun
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 76 (02): : 1463 - 1477
  • [47] Multi-heuristic dynamic task allocation using genetic algorithms in a heterogeneous distributed system
    Page, Andrew J.
    Keane, Thomas M.
    Naughton, Thomas J.
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2010, 70 (07) : 758 - 766
  • [48] Using intelligence in resource allocation and task off-loading for the IoE-edge networks
    Jamil, Syed Usman
    Khan, M. Arif
    Paracha, Muhammad Ali
    Rasheed, Abdul
    COMPUTER NETWORKS, 2025, 256
  • [49] Resource Allocation for Heterogeneous Service in Green Mobile Edge Networks Using Deep Reinforcement Learning
    Sun, Si-yuan
    Zheng, Ying
    Zhou, Jun-hua
    Weng, Jiu-xing
    Wei, Yi-fei
    Wang, Xiao-jun
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2021, 15 (07): : 2496 - 2512
  • [50] Optimizing human-robot task allocation using a simulation tool based on standardized work descriptions
    Baenziger, Timo
    Kunz, Andreas
    Wegener, Konrad
    JOURNAL OF INTELLIGENT MANUFACTURING, 2020, 31 (07) : 1635 - 1648