Approximating maximum leaf spanning trees in almost linear time

被引:71
|
作者
Lu, HI [1 ]
Ravi, R
机构
[1] Natl Chung Cheng Univ, Dept CSIE, Tainan, Taiwan
[2] Carnegie Mellon Univ, Grad Sch Ind Adm, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
D O I
10.1006/jagm.1998.0944
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given an undirected graph, Ending a spanning tree of the graph with the maximum number of leaves is MAX SNP-complete. In this paper we give a new greedy 3-approximation algorithm for maximum leaf spanning trees. The running time O((m + n)alpha(m, n)) required by our algorithm: where nt is the number of edges and n is the number of nodes, is almost linear in the size of the graph. We also demonstrate that our analysis of the performance of the greedy algorithm is tight via an example, (C) 1998 Academic Press.
引用
收藏
页码:132 / 141
页数:10
相关论文
共 50 条
  • [41] An eccentricity 2-approximating spanning tree of a chordal graph is computable in linear time
    Dragan, Feodor F.
    INFORMATION PROCESSING LETTERS, 2020, 154
  • [42] COMPUTING EUCLIDEAN MAXIMUM SPANNING-TREES
    MONMA, C
    PATERSON, M
    SURI, S
    YAO, F
    ALGORITHMICA, 1990, 5 (03) : 407 - 419
  • [43] Spanning trees with low maximum/average stretch
    Peleg, D
    ALGORITHMS AND COMPLEXITY, PROCEEDINGS, 2003, 2653 : 6 - 6
  • [44] An Almost-Linear Time Algorithm for Uniform Random Spanning Tree Generation
    Schild, Aaron
    STOC'18: PROCEEDINGS OF THE 50TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2018, : 214 - 227
  • [45] Approximating hexagonal Steiner minimal trees by fast optimal layout of minimum spanning trees
    Univ of Vermont, Burlington, United States
    Proc IEEE Int Conf Comput Des VLSI Comput Process, (392-398):
  • [46] Spanning trees with leaf distance at least d
    Erbes, C.
    Molla, T.
    Mousley, S.
    Santana, M.
    DISCRETE MATHEMATICS, 2017, 340 (06) : 1412 - 1418
  • [47] Spanning trees with leaf distance at least four
    Kaneko, Atsushi
    Kano, M.
    Suzuki, Kazuhiro
    JOURNAL OF GRAPH THEORY, 2007, 55 (01) : 83 - 90
  • [48] On minimum leaf spanning trees and a criticality notion
    Ozeki, Kenta
    Wiener, Gabor
    Zamfirescu, Carol T.
    DISCRETE MATHEMATICS, 2020, 343 (07)
  • [49] LINEAR VERIFICATION FOR SPANNING-TREES
    KOMLOS, J
    COMBINATORICA, 1985, 5 (01) : 57 - 65
  • [50] Kernelization algorithm of Maximum Leaf Spanning Tree
    Gao W.-Y.
    Jisuanji Xuebao/Chinese Journal of Computers, 2010, 33 (12): : 2211 - 2218